Subcomplex and sub-Kähler structures


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We introduce the notion of subcomplex structure on a manifold of arbitrary real dimension and consider some important particular cases of pseudocomplex structures: pseudotwistor, affinor, and sub-Kähler structures. It is shown how subtwistor and affinor structures can give sub-Riemannian and sub-Kähler structures. We also prove that all classical structures (twistor, Kähler, and almost contact metric structures) are particular cases of subcomplex structures. The theory is based on the use of a degenerate 1-form or a 2-form with radical of arbitrary dimension.

作者简介

E. Kornev

Kemerovo State University

编辑信件的主要联系方式.
Email: q148@mail.ru
俄罗斯联邦, Kemerovo

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016