On existence of a universal function for Lp[0, 1] with p∈(0, 1)


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We show that, for every number p ∈ (0, 1), there is gL1[0, 1] (a universal function) that has monotone coefficients ck(g) and the Fourier–Walsh series convergent to g (in the norm of L1[0, 1]) such that, for every fLp[0, 1], there are numbers δk = ±1, 0 and an increasing sequence of positive integers Nq such that the series ∑ k=0+∞δkck(g)Wk (with {Wk} theWalsh system) and the subsequence \(\sigma _{{N_q}}^{\left( \alpha \right)}\), α ∈ (−1, 0), of its Cesáro means converge to f in the metric of Lp[0, 1].

作者简介

M. Grigoryan

Yerevan State University

编辑信件的主要联系方式.
Email: gmarting@ysu.am
亚美尼亚, Yerevan

A. Sargsyan

Synchrotron Research Institute CANDLE

Email: gmarting@ysu.am
亚美尼亚, Yerevan

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016