The Operator Ln on Quasivarieties of Universal Algebras


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Let n be an arbitrary natural and let be a class of universal algebras. Denote by Ln() the class of algebras G such that, for every n-generated subalgebra A of G, the coset a/R (aA) modulo the least congruence R including A × A is an algebra in . We investigate the classes Ln(). In particular, we prove that if is a quasivariety then Ln() is a quasivariety. The analogous result is obtained for universally axiomatizable classes of algebras. We show also that if is a congruence-permutable variety of algebras then Ln() is a variety. We find a variety of semigroups such that L1() is not a variety.

作者简介

A. Budkin

Altai State University

编辑信件的主要联系方式.
Email: budkin@math.asu.ru
俄罗斯联邦, Barnaul

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2019