The Rao–Reiter Criterion for the Amenability of Homogeneous Spaces
- 作者: Kopylov Y.A.1
-
隶属关系:
- Sobolev Institute of Mathematics
- 期: 卷 59, 编号 6 (2018)
- 页面: 1094-1099
- 栏目: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172122
- DOI: https://doi.org/10.1134/S0037446618060125
- ID: 172122
如何引用文章
详细
We prove that a homogeneous space G/H, with G a locally compact group and H a closed subgroup of G, is amenable in the sense of Eymard–Greenleaf if and only if the quasiregular action πΦ of G on the unit sphere of the Orlicz space LΦ(G/H) for some N-function Φ ∈ Δ2 satisfies the Rao–Reiter condition (PΦ).
作者简介
Ya. Kopylov
Sobolev Institute of Mathematics
编辑信件的主要联系方式.
Email: yakop@math.nsc.ru
俄罗斯联邦, Novosibirsk
补充文件
