Orthogonality Relations for a Stationary Flow of an Ideal Fluid


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

For a real solution (u, p) to the Euler stationary equations for an ideal fluid, we derive an infinite series of the orthogonality relations that equate some linear combinations of mth degree integral momenta of the functions uiuj and p to zero (m = 0, 1,... ). In particular, the zeroth degree orthogonality relations state that the components ui of the velocity field are L2-orthogonal to each other and have coincident L2-norms. Orthogonality relations of degree m are valid for a solution belonging to a weighted Sobolev space with the weight depending on m.

Об авторах

V. Sharafutdinov

Sobolev Institute of Mathematics

Автор, ответственный за переписку.
Email: sharaf@math.nsc.ru
Россия, Novosibirsk

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).