Orthogonality Relations for a Stationary Flow of an Ideal Fluid
- Авторы: Sharafutdinov V.A.1
-
Учреждения:
- Sobolev Institute of Mathematics
- Выпуск: Том 59, № 4 (2018)
- Страницы: 731-752
- Раздел: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/172002
- DOI: https://doi.org/10.1134/S0037446618040158
- ID: 172002
Цитировать
Аннотация
For a real solution (u, p) to the Euler stationary equations for an ideal fluid, we derive an infinite series of the orthogonality relations that equate some linear combinations of mth degree integral momenta of the functions uiuj and p to zero (m = 0, 1,... ). In particular, the zeroth degree orthogonality relations state that the components ui of the velocity field are L2-orthogonal to each other and have coincident L2-norms. Orthogonality relations of degree m are valid for a solution belonging to a weighted Sobolev space with the weight depending on m.
Ключевые слова
Об авторах
V. Sharafutdinov
Sobolev Institute of Mathematics
Автор, ответственный за переписку.
Email: sharaf@math.nsc.ru
Россия, Novosibirsk
Дополнительные файлы
