A One-Dimensional Schrödinger Operator with Square-Integrable Potential


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

We study the spectral properties of a one-dimensional Schrödinger operator with squareintegrable potential whose domain is defined by the Dirichlet boundary conditions. The main results are concerned with the asymptotics of the eigenvalues, the asymptotic behavior of the operator semigroup generated by the negative of the differential operator under consideration. Moreover, we derive deviation estimates for the spectral projections and estimates for the equiconvergence of the spectral decompositions. Our asymptotic formulas for eigenvalues refine the well-known ones.

Об авторах

D. Polyakov

Southern Mathematical Institute; Institute of Mathematics

Автор, ответственный за переписку.
Email: DmitryPolyakow@mail.ru
Россия, Vladikavkaz; Ufa

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2018

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).