Contribution to the General Linear Conjugation Problem for A Piecewise Analytic Vector
- Авторлар: Kiyasov S.N.1
-
Мекемелер:
- Kazan (Volga Region) Federal University
- Шығарылым: Том 59, № 2 (2018)
- Беттер: 288-294
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171773
- DOI: https://doi.org/10.1134/S003744661802012X
- ID: 171773
Дәйексөз келтіру
Аннотация
Establishing an analogy between the theories of Riemann–Hilbert vector problem and linear ODEs, for the n-dimensional homogeneous linear conjugation problem on a simple smooth closed contour Γ partitioning the complex plane into two domains D+ and D− we show that if we know n−1 particular solutions such that the determinant of the size n−1 matrix of their components omitting those with index k is nonvanishing on D+ ∪ Γ and the determinant of the matrix of their components omitting those with index j is nonvanishing on Γ ∪ D− {∞}, where \(k,j = \overline {1,n} \), then the canonical system of solutions to the linear conjugation problem can be constructed in closed form.
Негізгі сөздер
Авторлар туралы
S. Kiyasov
Kazan (Volga Region) Federal University
Хат алмасуға жауапты Автор.
Email: Sergey.Kijasov@kpfu.ru
Ресей, Kazan
Қосымша файлдар
