On 2-Closedness of the Rational Numbers in Quasivarieties of Nilpotent Groups


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

The dominion of a subgroup H of a group G in a class M is the set of all elements aG that have equal images under every pair of homomorphisms from G to a group of M coinciding on H. A group H is said to be n-closed in M if for every group G = gr(H, a1,..., an) of M that contains H and is generated modulo H by some n elements, the dominion of H in G (in M) is equal to H. We prove that the additive group of the rational numbers is 2-closed in every quasivariety M of torsion-free nilpotent groups of class at most 3 whenever every 2-generated group of M is relatively free.

Об авторах

A. Budkin

Altai State University

Автор, ответственный за переписку.
Email: budkin@math.asu.ru
Россия, Barnaul

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Pleiades Publishing, Ltd., 2017

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).