Computability of Distributive Lattices
- Авторлар: Bazhenov N.A.1, Frolov A.N.2, Kalimullin I.S.2, Melnikov A.G.3
-
Мекемелер:
- Sobolev Institute of Mathematics
- Kazan (Volga Region) Federal University
- Massey University
- Шығарылым: Том 58, № 6 (2017)
- Беттер: 959-970
- Бөлім: Article
- URL: https://journals.rcsi.science/0037-4466/article/view/171546
- DOI: https://doi.org/10.1134/S0037446617060052
- ID: 171546
Дәйексөз келтіру
Аннотация
The class of (not necessarily distributive) countable lattices is HKSS-universal, and it is also known that the class of countable linear orders is not universal with respect to degree spectra neither to computable categoricity. We investigate the intermediate class of distributive lattices and construct a distributive lattice with degree spectrum {d: d ≠ 0}. It is not known whether a linear order with this property exists. We show that there is a computably categorical distributive lattice that is not relatively Δ20-categorical. It is well known that no linear order can have this property. The question of the universality of countable distributive lattices remains open.
Негізгі сөздер
Авторлар туралы
N. Bazhenov
Sobolev Institute of Mathematics
Хат алмасуға жауапты Автор.
Email: bazhenov@math.nsc.ru
Ресей, Novosibirsk
A. Frolov
Kazan (Volga Region) Federal University
Email: bazhenov@math.nsc.ru
Ресей, Kazan
I. Kalimullin
Kazan (Volga Region) Federal University
Email: bazhenov@math.nsc.ru
Ресей, Kazan
A. Melnikov
Massey University
Email: bazhenov@math.nsc.ru
Жаңа Зеландия, Massey
Қосымша файлдар
