Möbius bilipschitz homogeneous arcs on the plane


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

A möbius bilipschitz mapping is an η-quasimöbius mapping with the linear distortion function η(t) = Kt. We show that if an open Jordan arc γ ⊂ C with distinct endpoints a and b is homogeneous with respect to the family FK of möbius bilipschitz automorphisms of the sphere C with K specified then γ has bounded turning RT(γ) in the sense of Rickman and, consequently, γ is a quasiconformal image of a rectilinear segment. The homogeneity of γ with respect to FK means that for all x, y ∈ γ {a, b} there exists fFK with f(γ) = γ and f(x) = y. In order to estimate RT(γ) from above, we introduce the condition BR(δ) of bounded rotation of γ, and then the explicit bound depends only on K and δ.

作者简介

V. Aseev

Sobolev Institute of Mathematics

编辑信件的主要联系方式.
Email: btp@math.nsc.ru
俄罗斯联邦, Novosibirsk

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2016