Diffusion mechanism of internal friction in a niobium–titanium alloy


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

An NT50 alloy of the composition Nb–(48.5 ± 1.5)% Ti is studied after severe plastic deformation and subsequent 100-h annealing. During heating at a rate of 2 K/min, the NT50 alloy subjected to this thermomechanical treatment demonstrates two internal friction peaks at 493 K and 573 K. As the heating rate increases by a factor of three, both peaks shift to higher temperatures and the peak height at 573 K increases. A diffusion mechanism of the temperature-dependent internal friction in the strongly deformed NT50 alloy is proposed. Using this mechanism, the effect of the heating rate on the internal friction in this alloy is explained as the volume titanium diffusion due to the diffusion growth of α-Ti precipitates in subgrains in the alloy. In this case, the first peak is related to the bulk diffusion that accompanies grain-boundary diffusion in subgrains, and the second peak, to usual bulk diffusion in subgrains.

作者简介

V. Arzhavitin

National Science Center Kharkov Institute of Physics and Technology

编辑信件的主要联系方式.
Email: arzhavitin@kipt.kharkov.ua
乌克兰, ul. Akademicheskaya 1, Kharkov, 61108


版权所有 © Pleiades Publishing, Ltd., 2016
##common.cookie##