Formation of titanosilicate precursors of an active adsorption phase


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Micro-mesoporous titanosilicate precursors of the active absorption phase of a composite ceramic membrane are synthesized, and their textural and adsorption properties are investigated by means of low-temperature nitrogen adsorption/desorption. Low-temperature isotherms of nitrogen adsorption/desorption are analyzed using the BET, Langmuir, comparative t-plot, Barrett–Joyner–Halenda, and density functional theory methods. It is found that at high contents of silicon(IV) oxide, the resulting xerogels have surface areas of 656 and 890 m2/g according to the BET and Langmuir approaches, respectively, while the micropores’ inner and outer surfaces are 453 and 466 m2/g, respectively, according to the t-plot. According to the DFT distributions, the mesopore diameters of a sample can be adjusted in the range of 3–9 nm. By analyzing the type of capillary condensation hysteresis in the adsorption/desorption isotherms, it is shown that the pores in the samples are very bottle-like, even though their shape may be different in reality. It is found that in samples with high contents of titanium(IV) oxide, the pore throats are blocked during adsorbate desorption, due to the percolation effect. It is assumed that the stabilization of particles of titanium(IV) oxide by amorphous layers of silica protects the texture of titanosilicate xerogels from full contraction and the coalescence of particles during heat treatment ranging from 393 to 923 K.

作者简介

T. Kuznetsova

Institute of General and Inorganic Chemistry

编辑信件的主要联系方式.
Email: tatyana.fk@gmail.com
白俄罗斯, Minsk, 220072

A. Ivanets

Institute of General and Inorganic Chemistry

Email: tatyana.fk@gmail.com
白俄罗斯, Minsk, 220072

L. Katsoshvili

Institute of General and Inorganic Chemistry

Email: tatyana.fk@gmail.com
白俄罗斯, Minsk, 220072

补充文件

附件文件
动作
1. JATS XML

版权所有 © Pleiades Publishing, Ltd., 2017