Numerical simulation of leaky wedge acoustic wave excitation in piezoelectric structures

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The excitation of pseudowedge waves in piezoelectric wedges using interdigital transducers on their surface has been investigated. The frequency dependence of propagating waves in a wedge made of lithium niobate on the orientation of the crystal under various boundary conditions has been calculated. This allowed for an evaluation of the effect of wedge face metallization on the propagation characteristics of both wedge and surface acoustic waves within it. Two-dimensional and three-dimensional finite element models were developed to study the conditions for the existence of leaky wedge waves and the possibility of their excitation. The ranges of crystal orientations where pseudowedge waves are observed were determined. Two widely used cuts of lithium niobate were considered: Z-cut and Y-cut. The effect of non-reciprocal wave propagation in lithium niobate was demonstrated for two adjacent rectangular wedges with faces formed by equivalent crystallographic planes.

Sobre autores

I. Nedospasov

Kotelnikov Institute of Radioengineering and Electronics RAS; MIREA — Russian Technological University

Email: ianedospasov@mail.ru
Moscow, Russian Federation; Moscow, Russian Federation

P. Pupyrev

Kotelnikov Institute of Radioengineering and Electronics RAS

Moscow, Russian Federation

V. Kuznetsov

Kotelnikov Institute of Radioengineering and Electronics RAS

Moscow, Russian Federation

A. Smirnov

Kotelnikov Institute of Radioengineering and Electronics RAS

Moscow, Russian Federation

I. Kuznetsova

Kotelnikov Institute of Radioengineering and Electronics RAS

Moscow, Russian Federation

Bibliografia

  1. Ash E.A., De La Rue R.M., Humphryes R.F. // IEEE Trans. 1969. V. MTT‑17. № 11. P. 882.
  2. Lagasse P.E. // Electron. Lett. 1972. V. 8. № 15. P. 372.
  3. Mason I.M., Motz M.D., Chambers J. // Electron. Lett. 1972. V. 8. № 17. P. 429.
  4. Maradudin A.A., Wallis R.F., Mills D.L., Ballard R.L. // Phys. Rev. B. 1972. V. 6. № 4. P. 1106.
  5. Lagasse P.E., Mason I.M., Ash E.A. // IEEE Trans. 1973. V. MTT‑21, № 4, P. 225.
  6. McKenna J., Boyd G.D., Thurston R.N. // IEEE Trans. 1974. V. UFFC21. № 3. P. 178.
  7. Wagers R.S. // J. Appl. Phys. 1973. V. 44. № 11. P. 4813.
  8. Можаев В.Г. // Вестн. МГУ. Сер.3. Физика. Астрономия.1989. № 5. С. 40.
  9. Крылов В.В. // ЖТФ. 1990. Т. 60. № 2. С. 1.
  10. Gubernatis J.E., Maradudin A.A. // Wave Motion. 1987. V. 9. № 2. P. 111.
  11. Пупырев П.Д. Линейные и нелинейные клиновые волны в твердых телах. Дис. … канд. физ-мат. наук. М.: ИОФ им. А. М. Прохорова РАН, 2017. 160 с.
  12. Lomonosov A.M., Hess P., Mayer A.P. // Appl. Phys. Lett. 2012. V. 101. № 3. P. 031904.
  13. Pupyrev P.D., Lomonosov A.M., Hess P. et al. // J. Appl. Phys. 2014. V. 115. № 24. P. 243504.
  14. Pupyrev P.D., Nedospasov I.A., Mayer A.P. // Ultrasonics. 2019. V. 95. P. 52.
  15. Pupyrev P.D., Lomonosov A.M., Nedospasov I.A., Mayer A.P. // Appl. Phys. Lett. 2021. V. 119. № 2. Article No. 021902.
  16. Liu J., Declercq N.F. // J. Acoust. Soc. Amer. 2015. V. 138. № 2. P. 1168.
  17. Lagasse P.E., Mason I.M., Ash E.A. // IEEE Trans. 1973. V. MTT‑21. № 4. P. 225.
  18. Datta S., Hunsinger B.J. // J. Appl. Phys. 1977. V. 48. № 12. P. 5334.
  19. Пупырев П.Д., Недоспасов И.А., Кузнецова И.Е. // Радиоэлектроника. Наносистемы. Информационные технологии. 2024. Т. 16. № 7. С. 837.
  20. Joshi S.G., Zaitsev B.D., Kuznetsova I.E. et al. // Ultrasonics. 2006. V. 44. P.e787.
  21. Laude V., Wilm M., Benchabane S., Khelif A. // Phys. Rev. E. 2005. V. 71. № 3. P. 036607.
  22. Nedospasov  I.A., Pupyrev  P.D., Sotnikov A. et al. // Ultrasonics. 2024. V. 138. Article No. 107250.
  23. Nedospasov I.A., Pupyrev  P.D., Bechler N. et al. // J. Sound and Vibration. 2022. V. 527. P. 116854.
  24. Doinikov  A.A., Gerlt M.S., Dual J. // Phys. Rev. Lett. 2020. V. 124. № 15. P. 154501.
  25. Doinikov  A.A., Gerlt M.S., Pavlic A., Dual J. // Microfluidics and Nanofluidics. 2020. V. 24. № 5. P. 32.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).