General Solution of the Problem of Synthesis of a Geodesic Lens with Central Symmetry and Dielectric Filling

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A solution is obtained for the problem of synthesis of a metal–dielectric geodesic lens with central symmetry and, in the general case, inhomogeneous dielectric filling, which transforms the field of a point source into a given geometric optical field. By way of example using the obtained solution, the problems of synthesis of a geodesic lens antenna with layered and gradient dielectric filling are considered. In particular, solutions are obtained for lens antennas with in-phase output front and out-of-phase front that forms a tableshaped radiation pattern. The solutions are analyzed with the aid of numerical simulation using the finite element method.

Sobre autores

A. Venetskiy

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: AVenetsky@yandex.ru
Moscow, 125009 Russia;

V. Kaloshin

Kotelnikov Institute of Radioengineering and Electronics, Russian Academy of Sciences

Email: vak@cplire.ru
Moscow, 125009 Russia;

Chan Thang

Moscow Institute of Physics and Technology, National Research University

Autor responsável pela correspondência
Email: vak@cplire.ru
Dolgoprudnyi, Moscow oblast, 141700 Russia

Bibliografia

  1. Hong W., Jiang Z.H., Yu Ch. et al. // IEEE Trans. 2017. V. AP-65. № 12. P. 6231.
  2. Quevedo-Teruel O., Ebrahimpouri M., Ghasemifard F. // IEEE Commun. Magazine. 2018. V. 56. № 7. P. 36.
  3. Numan A.B., Frigon J.-F., Laurin J.-J. // IEEE Trans. 2018. V. AP-66. № 10. P. 5614.
  4. Quevedo-Teruel O., Ebrahimpouri M., Kehn M.N. // IEEE Antennas Wireless Propagation Lett. 2016. V. 15. P. 484.
  5. Diallo C.D., Girard E., Legay H., Sauleau R. // Proc. 11th Europ. Conf. Antennas and Propagation (EUCAP). Paris. 19–24 Mar. 2017. N.Y.: IEEE, 2017. P. 1401.
  6. Quevedo-Teruel O., Miao J., Mattsson M. et al. // IEEE Antennas Wireless Propagation Lett. 2018. V. 17. № 9. P. 1588.
  7. Bantavis P., Gonzalez C.G., Sauleau R. et al. // Opt. Express. 2020. V. 28. № 10. P. 14648.
  8. Chou H.-T., Chang Y.-S., Huang H.-J. et al. // IEEE Access. 2019. V. 7. P. 182974.
  9. Chou H.-T., Chang Y.-S., Huang H.-J. et al. // IEEE Access. 2020. V. 8. P. 79124.
  10. Венецкий A.C., Калошин B.A., Чан Т.Т. // РЭ. 2022. Т. 67. № 8. С. 754.
  11. Liao Q., Fonseca N.J.G., Quevedo-Teruel O. // IEEE Trans. 2018. V. AP-66. № 12. P. 7383.
  12. Fonseca N.J.G., Liao Q., Quevedo-Teruel O. // IEEE Trans. 2020. V. AP-68. № 5. P. 3410.
  13. Fonseca N.J.G., Liao Q., Quevedo-Teruel O. // IET Microwave Antennas Propagat. 2021. V. 15. № 2. P. 123.
  14. Fonseca N.J.G. // Rev. of Electromagnetics. 2022. V. 1. № 1. Article No. 21008.
  15. Венецкий А.С., Калошин В.А., Чан Т.Т. // РЭ. 2022. Т. 67. № 5. С. 447.
  16. Orgeira O., León G., Fonseca N.J.G., Quevedo-Teruel O. // IEEE Trans. 2022. V. AP-70. № 5. P. 3320.
  17. Sochacki J. // J. Modern Optics. 1988. V. 35. № 6. P. 891.
  18. Вайнштейн Л.А. Теория диффракции и метод факторизации. М.: Сов. радио, 1966.
  19. Калошин В.А. Дис. … док. физ.-мат. наук. М.: ИРЭ АН СССР, 1989. 250 с.
  20. Ахияров В.В., Калошин В.А., Никитин Е.А. // Журн. радиоэлектроники. 2014. № 1. http://jre.cplire.ru/ jre/jan14/18/text.pdf.
  21. Калошин В.А., Стоянов С.В. // РЭ. 1989. Т. 35. № 12. С. 2640.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (141KB)
3.

Baixar (68KB)
4.

Baixar (136KB)
5.

Baixar (48KB)
6.

Baixar (33KB)
7.

Baixar (202KB)

Declaração de direitos autorais © А.С. Венецкий, В.А. Калошин, Чан Тиен Тханг, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies