Comparison of annealing schemes of Yb: YAG and Yb: LuAG ceramics after hot isostatic pressing
- Authors: Lopukhin K.V.1, Balashov V.V.1, Efimov A.A.1, Kozlova S.M.1, Gerke M.N.2, Kochuev D.A.2
-
Affiliations:
- Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
- Vladimir State University named after Alexander and Nikolay Stoletovs
- Issue: Vol 70, No 10 (2025)
- Pages: 989-996
- Section: TO THE 70th ANNIVERSARY OF THE KOTELNIKOV IRE RAS
- URL: https://journals.rcsi.science/0033-8494/article/view/353267
- DOI: https://doi.org/10.7868/S3034590125100139
- ID: 353267
Cite item
Abstract
The Yb: YAG and Yb: LuAG ceramic samples with the SiO2+B2O3 sintering additives, as well as the Yb: YAG ceramic samples with the CaO+MgO sintering additives, were obtained by reactive vacuum presintering at different temperatures followed by hot isostatic pressing (HIP) with different annealing schemes used after HIP. The optimal presintering conditions were determined, the effect of the sintering additives on the structural and optical properties of the samples was studied. The optical transmission of the samples was investigated, and the average grain size was measured. It was found that the optimal presintering temperature for Yb: YAG samples with the SiO2+B2O3 sintering additives is below 1500 °C, with CaO+MgO – in the range of 1700–1750 °C, and for Yb: LuAG samples with the SiO2+B2O3 sintering additives – in the range of 1500–1600 °C. To achieve the best optical characteristics, samples with SiO2+B2O3 sintering additives must be annealed first in vacuum and then in air after HIP. In the case of composition with CaO+MgO sintering additives, additional annealing after HIP leads to a loss of transparency by the samples.
About the authors
K. V. Lopukhin
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
V. V. Balashov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
A. A. Efimov
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
S. M. Kozlova
Fryazino Branch of the Kotelnikov Institute of Radioengineering and Electronics RAS
Email: kvl215@fireras.su
Vvedensky Squar., 1, Fryazino, Moscow Region, 141190 Russian Federation
M. N. Gerke
Vladimir State University named after Alexander and Nikolay Stoletovs
Email: kvl215@fireras.su
Gorky Str., 87, Vladimir, 600000 Russian Federation
D. A. Kochuev
Vladimir State University named after Alexander and Nikolay Stoletovs
Author for correspondence.
Email: kvl215@fireras.su
Gorky Str., 87, Vladimir, 600000 Russian Federation
References
- Ikesue A., Kinoshita T., Kamata K. et al. // J. Amer. Ceram. Soc. 1995. V. 78. № 4. P. 1033.
- doi.org/10.1111/j.1151-2916.1995.tb08433.x
- Ikesue A., Aung Y.L. // Nature Photonics. 2008. V. 2. № 12. P. 721.
- doi.org/10.1038/nphoton.2008.243
- Lu J., Ueda K., Yagi H. et al. // J. Alloys Compd. 2002. V. 341. № 1–2. P. 220.
- doi.org/10.1016/S0925-8388(02)00083-X
- Ikesue A., Aung Y.L., Taira T. et al. // Annual Rev. Mater. Res. 2006. V. 36. № 1. P. 397.
- doi.org/10.1146/annurev.matsci.36.011205.152926
- Brenier A., Boulon G. // J. Alloys Compd. 2001. V. 323–324. P. 210.
- doi.org/10.1016/S0925-8388(01)01112-4
- Dong J., Ueda K., Yagi H. et al. // Laser Phys. Let. 2009. V. 6. № 4. P. 282.
- doi.org/10.1002/lapl.200810136
- Luo D., Zhang J., Xu C. et al. // Opt. Mater. 2012. V. 34. № 6. P. 936.
- doi.org/10.1016/j.optmat.2011.04.017
- Tang F., Cao Y., Guo W. et al. // Opt. Mater. 2011. V. 33. № 8. P. 1278.
- doi.org/10.1016/j.optmat.2011.02.049
- Wu Y., Li J., Pan Y. et al. // J. Amer. Ceram. Soc. 2007. V. 90. № 10. P. 3334.
- doi.org/10.1111/j.1551-2916.2007.01885.x
- Luo D., Zhang J., Xu C. et al. // Opt. Mater. Express. 2012. V. 2. № 10. P. 1425.
- doi.org/10.1364/OME.2.001425
- Ikesue A., Furusato I., Kamata K. // J. Amer. Ceram. Soc. 1995. V. 78. № 1. P. 225.
- doi.org/10.1111/j.1151-2916.1995.tb08389.x
- Awaad M. // J. Ceram. Sci. Technol. 2012. V. 3. № 1. P. 35.
- doi.org/10.4416/JCST2012-00043
- Frage N., Kalabukhov S., Sverdlov N. et al. // Ceram. Int. 2012. V. 38. № 7. P. 5513.
- doi.org/10.1016/j.ceramint.2012.03.066
- Frage N., Kalabukhov S., Sverdlov N. et al. // J. Europ. Ceram. Soc. 2010. V. 30. № 16. P. 3331.
- doi.org/10.1016/j.jeurceramsoc.2010.08.006
- Sokol M., Kalabukov S., Kasiyan V. et al. // J. Amer. Ceram. Soc. 2016. V. 99. № 3. P. 802.
- doi.org/10.1111/jace.14051
- Lagny M., Böhmler J., Lemonnier S. et al. // Open Ceram. 2024. V. 18. P. 100570.
- doi.org/10.1016/j.oceram.2024.100570
- Bigotta S., Galecki L., Katz A. et al. // Opt. Express. 2018. V. 26. № 3. P. 3435.
- doi.org/10.1364/OE.26.003435
- Ikesue A., Aung Y.L. // J. Amer. Ceram. Soc. 2017. V. 100. № 1. P. 26.
- doi.org/10.1111/jace.14588
- Zhang P., Jiang B., Fan J. et al. // Opt. Mater. Express. 2015. V. 5. № 10. P. 2209.
- doi.org/10.1364/OME.5.002209
- Jiang B., Lu X., Zeng Y. et al. // Phys. Stat. Sol. C. 2013. V. 10. № 6. P. 958.
- doi.org/10.1002/pssc.201300016
- Kravtsov A.A., Chapura O.M., Tarala V.A. et al. // J. Europ. Ceram. Soc. 2025. V. 45. № 3. P. 117033.
- doi.org/10.1016/j.jeurceramsoc.2024.117033
- Lee S., Kupp E.R., Stevenson A.J. et al. // J. Amer. Ceram. Soc. 2009. V. 92. № 7. P. 1456.
- doi.org/10.1111/j.1551-2916.2009.03029.x
- Tian F., Chen C., Liu Y. et al. // Opt. Mater. 2020. V. 101. P. 109728.
- doi.org/10.1016/j.optmat.2020.109728
- Nie Y., Liu Y., Zhao Y., Zhang M. // Opt. Mater. 2015. V. 46. P. 203.
- doi.org/10.1016/j.optmat.2015.04.019
- Xu X., Zhao Z., Zhao G. et al. // J. Crystal Growth. 2003. V. 257. № 3–4. P. 297.
- doi.org/0.1016/S0022-0248(03)01455-6
- Wang X., Liu Y., Zhao P. et al. // J. Appl. Phys. 2015. V. 117. № 15. P. 153104.
- doi.org/10.1063/1.4918550
- Tang F., Huang J., Guo W. et al. // Opt. Mater. 2012. V. 34. № 5. P. 757.
- doi.org/10.1016/j.optmat.2011.10.015
- Jiang N., Ouynag C., Liu Y. et al. // Opt. Mater. 2019. V. 95. P. 109203.
- doi.org/10.1016/j.optmat.2019.109203
- Zhang Y., Cai M., Jiang B. et al. // Opt. Mater. Express. 2014. V. 4. № 10. P. 2182.
- doi.org/10.1364/OME.4.002182
- Lu Z., Lu T., Wei N. et al. // Opt. Mater. 2015. V. 47. P. 292.
- doi.org/10.1016/j.optmat.2015.05.043
- Lapin V.A., Kravtsov A.A., Suprunchuk V. et al. // Opt. Mater. 2024. V. 157. P. 116353.
- doi.org/10.1016/j.optmat.2024.116353
- Helle A.S., Easterling K.E., Ashby M.F. // Acta Metall. 1985. V. 33. № 12. P. 2163.
- doi.org/10.1016/0001-6160(85)90177-4
- Kwon O.-H., Messing G.L. // Acta Metall. Mater. 1991. V. 39. № 9. P. 2059.
- doi.org/10.1016/0956-7151(91)90176-2
Supplementary files

