Extraction properties of polyphosphorylated pyridines in nitric acid media

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The extraction of U(VI), Th(IV), Am(III), and Eu(III) with solutions of phosphorylated pyridines from nitric acid solutions has been studied. The stoichiometry of the extractable complexes was established. In terms of their extraction ability, these compounds are inferior to bis(diphenylphosphinyl)methane, but they are signi cantly superior to carbamoylmethylphosphine oxides. An increase in the number of phosphine oxide groups in the molecules of phosphorylated pyridines leads to a signi cant decrease in their extraction ability and selectivity in the extraction of Am(III) and Eu(III) from nitric acid solutions.

Sobre autores

A. Turanov

Osipyan Institute of Solid State Physics, Russian Academy of Sciences

V. Karandashev

Institute of Microelectronics and High Pure Materials, Russian Academy of Sciences

G. Kostikova

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

A. Fedoseev

Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences

O. Artyushin

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

V. Brel

Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences

Email: v_brel@mail.ru

Bibliografia

  1. Myasoedov B.F., Kalmykov S.N., Kulyako Yu.M., Vinokurov S.E. // Geochem. Int. 2016. Vol. 54, N 13. P. 1156. https://doi.org/10.1134/S0016702916130115
  2. Leoncini A., Huskens J., Verboom W. // Chem. Soc. Rev. 2017. Vol. 46. P. 7229.https://doi.org/10.1039/C7CS00574A
  3. Wilson A.M., Bailey P.J., Tasker P.A. // Chem. Soc. Rev. 2014. Vol. 43. P. 123. https://doi.org/10.1039/C3CS60275C
  4. Werner E.J., Biros S.M. // Org. Chem. Front. 2019. Vol. 6. P. 2067. doi: 10.1039/C9QO00242A
  5. Bhattacharyya A., Mohapatra P.K. // Radiochim. Acta. 2019. Vol. 107. P. 931. https://doi.org/10.1515/ract-2018-3064
  6. Аляпышев М.Ю., Бабаин В.А., Устынюк Ю.А. // Успехи химии. 2016. Т. 85. № 9. С. 943
  7. Alyapyshev M.Yu., Babain V.A., Ustynyuk Yu.A. // Russ. Chem. Rev. 2016. Vol. 85. N 9. P. 943. https://doi.org/10.1070/RCR4588
  8. Розен А.М., Крупнов Б.В. // Успехи химии. 1996. Т. 65, № 11. С. 1052
  9. Rozen A.M., Krupnov B.V. // Rus. Chem. Rev. 1996. Vol. 65. N 11. P. 973. https://doi.org/10.1070/RC1996v065n11ABEH000241
  10. Matveeva А.G., Kudryavtsev I.Yu., Pasechnik M.P., Vologzhanina A.V.,Baulina T.V., Vavina A.V., Sukat G Ya., Matveev S.V., Godovikov I.A., Turanov A.N., Karandashev V.K., Brel V.K. // Polyhedron. 2018. Vol. 142. P. 71. https://doi.org/10.1016/j.poly.2017.12.025
  11. Kolaric Z. // Chem. Rev. 2008. Vol. 108. P. 4208.
  12. Ekberg C., Fermvik A., Retegan T., Skarnemark G., Foreman M.R.S., Hudson M.J., Englund S., Nilssson M. // Radiochim Acta. 2008. Vol. 96. P. 225.
  13. Trumm S., Geist A., Panac P.J., Fanghanel T. // Solvent Extr. Ion Exch. 2011. Vol. 29. P. 213.
  14. Lewis F.W., Harwood L.M., Hudson M.J., Drew M.G.B., Hubscher-Bruder V., Videva V., Arnaud-New F., Stamberg K., Vyas S. // Inorg. Chem. 2013.Vol. 52. P. 4993.
  15. Panak P.J., Geist A. // Chem. Rev. 2013. Vol. 113. P. 1199.
  16. Аляпышев М.Ю., Бабаин В.А., Ткаченко Л.И. // Радиохимия. 2014. Т. 56. С. 481.
  17. Ustynyuk Yu.A., Gloriozov I.P., Kalmykov S.N., Mitrofanov A.A.,Babain V.A., Alyapyshev M.Yu., Ustynyuk N.A. // Solvent Extr. Ion Exch. 2014. Vol. 32. P. 508.
  18. Alyapyshev M., Babain V., Borisova N., Eliseev I., Kirsanov D., Kostin A., Legin A., Reshetova M., Smirnova Z. // Polyhedron. 2010. Vol. 29. P. 1998.
  19. Alyapyshev M., Ashina J., Dar'in D., Kenf E.V., Kirsanov D., Tkachenko L., Legin A., Starova G., Babain V. // RSC Adv. 2016. Vol. 6. P. 68642.
  20. Matveev P.I., Borisova N.E., Andreadi N.G., Zakirova G.G., Petrov V.G., Belova E.V., Kalmykov S.N., Myasoedov B.F. // Dalton Trans. 2019. Vol. 48. P. 2554. https://doi.org/10.1039/C8DT04729D
  21. Konopkina E.A., Matveev P.I., Huang P.W., Kirsanova A.A., Chernysheva M.G., Sumyanova T.B., Domnikov K.S., Shi W.-Q., Kalmykov S.N., Petrov V.G., Borisova N.E. // DaltonTrans. 2022. Vol. 51. P. 11180. https://doi.org/10.139/d2dt01007k
  22. Артюшин О.И., Вологжанина А.В., Брель В.К. // ЖОХ. 2021. Т. 91, № 4. С. 653.
  23. Artyushin O.I.,Vologzhanina A.V., Turanov A.N., Karandashev V.K., Brel V.K. // Mendeleev Commun. 2021. Vol. 31. P. 306.https://doi.org/10. 1016/j.mencom.2021.05.009
  24. Туранов А.Н., Карандашев В.К., Артюшин О.И., Костикова Г.В., Федосеев А.М., Брель В.К. // ЖОХ. 2022. Т. 92, N 8. С. 1289
  25. Turanov A.N., Karandashev V.K., Artyushin O.I., Kostikova G.V., Fedoseev A.M., Brel V.K. // Russ. J. Gen. Chem. 2022. Vol. 92. P. 1479. https://doi.org/10.1134/S1070363222080163
  26. Matveeva A.G., Artyushin O.I., Pasechnik M.P., Stash A.I., Vologzhanina A.V., Matveev S.V., Godovikov I.A., Aysin R.R., Moiseeva A.A., Turanov A.N., Karandashev V.K., Brel V.K. // Polyhedron. 2021. Vol. 198. Article 115085. https://doi.org/10.1016/j.poly.2021.115085
  27. Myasoedov B.F., Chmutova M.K., Kochetkova N.E., Koiro O.E., Pribylova G.A., Nesterova N.P., Medved T.Y., Kabachnik M.I. // Solvent Extr. Ion Exch. 1986. Vol. 4, N 1. P. 61.

Declaração de direitos autorais © Russian Academy of Sciences, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies