УЛК 546.718:546.262.3

КРИСТАЛЛИЧЕСКАЯ И МОЛЕКУЛЯРНАЯ СТРУКТУРА БИЯДЕРНЫХ КАРБОНИЛХЛОРИДНЫХ КОМПЛЕКСОВ ТЕХНЕЦИЯ $[^{99}\text{TcCl}(CO)_3(C_5\text{H}_8\text{O}_2)]_2$ $(C_5\text{H}_8\text{O}_2 = \text{АЦЕТИЛАЦЕТОН})$ И $[^{99}\text{TcCl}(CO)_4]_2$

© 2024 г. Г. В. Сидоренко^{а, б, *}, А. Е. Мирославов^{а-в}, В. В. Гуржий^в, А. Р. Кочергина^{а-в}, А. П. Сахоненкова^{а, б}, М. Ю. Тюпина^{а, б}, Л. С. Чистый^г, Е. А. Печерцева^а

^a Радиевый институт им. В.Г. Хлопина, 194021, Санкт-Петербург, 2-й Муринский пр., д. 28
^бОзерский технологический институт — филиал НИЯУ МИФИ, 456783, Озерск Челябинской обл., пр. Победы, д. 48
^вСанкт-Петербургский государственный университет, 199034, Санкт-Петербург, Университетская наб., д. 7/9
^г Научно-исследовательский институт гигиены, профпатологии и экологии человека Федерального медикобиологического агентства, 188663, Ленинградская обл., Всеволожский р-н., Кузьмоловское г.п., г.п. Кузьмоловский,
ул.Заводская, зд. 6/2, корп. 93

*e-mail: gevasid@mail.ru

Получена 15.08.2024, после доработки 22.08.2024, принята к публикации 23.08.2024

Определена кристаллическая и молекулярная структура комплекса [99 TcCl(CO) $_3$ (C $_5$ H $_8$ O $_2$)] $_2$ (C $_5$ H $_8$ O $_2$) = Hacac — ацетилацетон), образовавшегося при длительном стоянии раствора [99 Tc(acac)(CO) $_4$] в CCl $_4$ / CDCl $_3$, и его аналога, не содержащего органического лиганда — [99 TcCl(CO) $_4$] $_2$. Оба комплекса содержат четырехчленный цикл [Tc $_2$ (μ -Cl) $_2$]. Оставшиеся позиции в координационной сфере атома Tc заняты карбонильными лигандами, а в случае [99 TcCl(CO) $_3$ (Hacac)] $_2$ — также нейтральной молекулой ацетилацетона в енольной форме. В биядерном комплексе молекулы Насас находятся в μuc -положении к атомам Cl в октаэдрическом окружении атомов Tc и в μuc -положении друг к другу относительно кольца [Tc $_2$ (μ -Cl) $_2$]. Проведен сравнительный анализ геометрических характеристик комплексов и их известных аналогов.

Ключевые слова: технеций, карбонильные комплексы, мостиковые галогенидные комплексы, ацетилацетон, кристаллическая и молекулярная структура.

DOI: 10.31857/S0033831124050027

ВВЕДЕНИЕ

Карбонил- β -дикетонаты технеция были впервые получены в нашей ранней работе [1]. Мы определили кристаллическую и молекулярную структуру двух представителей данного класса — [99 Tc(acac)(CO) $_3$ [2 и [99 Tc(acac)(CO) $_3$ (Et $_2$ NH)] (acac — анион ацетилацетона) [2]. Позднее был опубликован ряд работ, посвященных возможности использования карбонил- β -дикетонатов технеция в ядерной медицине [3—6]. В связи с этим важное значение имеет изучение условий образования и реакционной способности карбонил- β -дикетонатов технеция. В частности, они не всегда ведут себя как инертные координационные ядра, к которым могут быть присоединены те или иные лиганды, и могут вступать в различные превращения [5].

Поэтому мы возобновили исследования карбонил- β -дикетонатов технеция с целью углубленного изучения их реакционной способности. В процессе исследований нами было обнаружено, что при длительном стоянии раствора [99 Tc(acac) (CO)₄] в CCl₄ с добавкой CDCl₃ образовалось небольшое количество кристаллов, идентифицированных методом рентгеноструктурного анализа как [99 TcCl(CO)₃(Hacac)], (Hacac — ацетилацетон

в енольной форме). Настоящая работа посвящена сравнительному анализу структуры данного комплекса и соединения со сходным структурным мотивом [99 TcCl(CO)₄] с привлечением литературных данных для аналогичных соединений марганца и рения.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

 $[^{99}\text{TcX}(\text{CO})_5]$ (X = Cl, Br) получали автоклавным карбонилированием $K^{99}\text{TcO}_4$ смесью муравьиной и соответствующей галогеноводородной кислоты по ранее описанной процедуре [7]. Перед использованием пентакарбонильные комплексы дополнительно очищали сублимацией в форвакууме. Ацетилацетонат калия (Касас) был получен при реакции КОН с избытком ацетилацетона, избыток дикетона удаляли при нагревании в вакууме. Растворители CH_2Cl_2 и CCl_4 очищали путем дистилляции над P_2O_5 . Остальные реактивы были химически чистыми (Fluka и Sigma—Aldrich) и использовались без дополнительной очистки.

ИК спектры растворов регистрировали на спектрометре Simex FT-801 в диапазоне $1700-2400~{\rm cm}^{-1}$ с использованием кювет с окнами из CaF₂. Спектры ЯМР ⁹⁹Тс снимали на приборе Bruker Avance III 400 с рабочей частотой для ядер ⁹⁹Тс 90.06 МГц при

296 K, в качестве растворителя использовали $\mathrm{CCl_4}$ с добавкой $\mathrm{CDCl_3}$. Содержание ⁹⁹Tc в образцах определяли спектрофотометрически с тиомочевиной [8] на спектрометре Mettler Toledo UV5. Спектрофотометрический анализ проводили с использованием кварцевых кювет высшего качества с длиной оптического пути 10 мм (Hellma Analytics, тип OS).

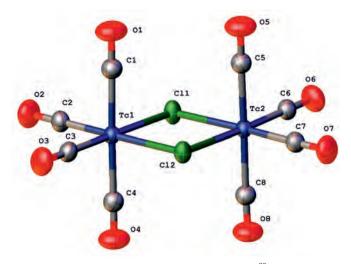
Раствор [99 Tc(acac)(CO) $_4$] в CCl $_4$ получали перемешиванием твердого [99 TcBr(CO) $_5$] с трехкратным избытком калиевой соли ацетилацетона под слоем растворителя при комнатной температуре в течение 2 ч аналогично методике [1], контролируя полноту превращения методом ИК спектроскопии по характеристическим полосам v(CO). ИК спектр [99 TcBr(CO) $_5$] (CCl $_4$, v, см $^{-1}$): 2152.4 сл, 2059.8 с, 1998.1 ср. ИК спектр [99 Tc(acac)(CO) $_4$] (CCl $_4$, v, см $^{-1}$): 2113.8 сл, 2025.1 с, 1998.1 с, 1951.8 с; литературные данные [1] (CCl $_4$, v, см $^{-1}$): 2115 сл, 2026 с, 1998 с, 1950 с. Выход [99 Tc(acac)(CO) $_4$] определен по содержанию 99 Tс по методике [8]: 87%.

 $[^{99}\text{TcBr}(\text{CO})_5] + \text{K}(\text{acac}) = [^{99}\text{Tc}(\text{acac})(\text{CO})_4] + \text{KBr}\downarrow + \text{CO}\uparrow.$

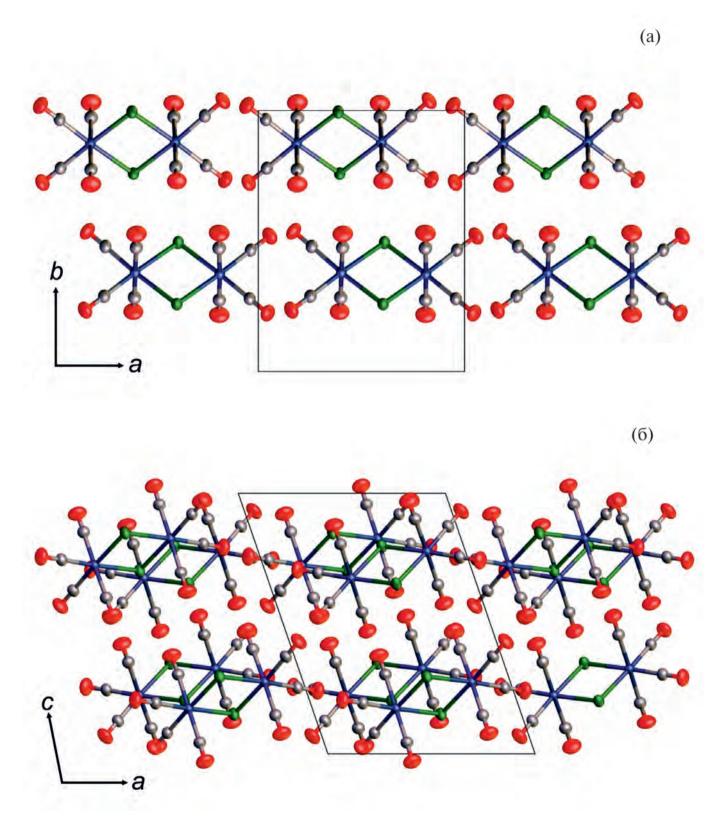
Раствор тетракарбонилацетилацетонатного комплекса отделяли от осадка KBr путем фильтрования в инертной атмосфере. [99 Tc(acac)(CO)₄] сравнительно неустойчив [1], выделить его в твердом состоянии не удается. Его идентифицировали в растворе, помимо ИК спектроскопии, также методом ЯМР 99 Tc (CCl₄/CDCl₃, δ , м.д.): -1068.8.

После записи спектра ЯМР 99 Тс раствора [99 Тс(асас)(СО)₄] содержимое ампулы переносили в пенициллиновый флакон, который помещали в большой сосуд, содержащий P_2O_5 . Сосуд продували аргоном, герметично закрывали и помещали в холодильник при 8°С. При стоянии в течение полутора недель в пенициллиновом флаконе образовались кристаллы, пригодные для рентгеноструктурного исследования.

Кристаллы [99 TcCl(CO) $_4$] $_2$ для сравнительного анализа получали кратковременным (5 мин) нагреванием раствора [99 TcCl(CO) $_5$] в толуоле при 100° С согласно работе [9]. Из выпавшего при охлаждении осадка [99 TcCl(CO) $_4$] $_2$ (выход 37.5%) был выбран кристалл для рентгеноструктурного исследования.


Для проведения рентгеноструктурного эксперимента кристаллы соединений [99 TcCl(CO) $_4$] $_2$ (1) и [99 TcCl(CO) $_3$ (Hacac)] $_2$ (2) закрепляли на микродержателе и помещали на монокристальный дифрактометр Rigaku XtaLAB Synergy-S, оснащенный плоским полупроводниковым высокоскоростным детектором отраженных рентгеновских лучей прямого действия HyPix-6000HE. Измерения проводили с использованием микрофокусного монохроматического MoK_α -излучения. Параметры элементарных ячеек (табл. 1) уточняли методом наименьших квадратов. Данные проинтегрированы с поправками на фон, Лоренца и поляризационные эффекты в программном комплексе CrysAlisPro [10]. Поправка

на поглощение введена в программном комплексе CrysAlisPro эмпирически с помощью сферических гармоник, реализованных в алгоритме шкалирования SCALE3 ABSPACK. Структуры решены с помощью алгоритма двойного пространства и уточнены с использованием программ SHELX [11,12], встроенных в комплекс OLEX2 [13]. Позиции атомов водорода рассчитаны по алгоритмам, заложенным в программном комплексе SHELX, где $U_{iso}(H)$ установлено как $1.5U_{eq}(C)$ при C-H 0.98 Å для групп CH $_3$ и как $1.2U_{eq}(C)$ при C-H 0.95 Å для групп CH. Файлы CCDC 2376839 (1) и 2376840 (2) содержат дополнительные кристаллографические данные для этой работы и могут быть получены бесплатно из базы данных кристаллических структур органических соединений на сайте www.ccdc.cam.ac.uk/structures/.


РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Хотя биядерный комплекс [99 TcCl(CO)₄]₂ известен уже более 60 лет [14], его рентгеноструктурный анализ проведен не был. Ранее нами была определена структура [99 TcI(CO)₄]₂ [15], а также на основании порошковых данных была отмечена изоструктурность соединений [99 TcX(CO)₄] (X = Cl, Br, I) [9]. Выполненный нами в настоящей работе рентгеноструктурный анализ [99 TcCl(CO)₄]₂ подтвердил выводы, сделанные в ранней работе [9]. Как и остальные структурно исследованные соединения [MX(CO)₄]₂ (M = Mn, X = Cl, Br, I; M = Tc, X = I; M = Re, X = Cl, I) [15–25], комплекс [99 TcCl(CO)₄]₂ кристаллизуется в моноклинной сингонии (пространственная группа $P2_1/c$). Все вышеуказанные комплексы имеют близкие (с учетом разницы в размерах атомов металлов и галогенов) параметры элементарной ячейки.

На рис. 1 показана молекулярная структура комплекса $[^{99}\text{TcCl}(\text{CO})_4]_2$ (1), в табл. 2 приведены длины связей и валентные углы в координационной сфере комплекса. Упаковка молекул $[^{99}\text{TcCl}(\text{CO})_4]_2$ в кристаллической ячейке показана на рис. 2.

Рис. 1. Молекулярная структура комплекса [99 TcCl(CO)₄]₂.

Рис. 2. Упаковка молекул [$TcCl(CO)_4$]₂ в кристаллической решетке, проекция на плоскость ab (a) и ac (б). Показаны контуры элементарной ячейки.

Таблица 1. Кристаллографические данные и параметры уточнения структур 1 и 2*

Параметр	$[^{99}\text{TcCl(CO)}_{4}]_{2}$ (1)	$[^{99}\text{TcCl(CO)}_3(\text{Hacac})]_2$ (2)
Формула	$C_8Cl_2O_8Tc_2$	$C_{16}H_{16}Cl_2O_{10}Tc_2$
Молекулярная масса	490.98	635.19
Сингония	Моноклинная	Триклинная
Пространственная группа	$P2_1/c$	$P\overline{1}$
a, Å	9.7377(3)	10.1883(4)
b, Å	11.6572(4)	10.7757(3)
c, Å	12.9476(4)	12.6288(4)
α, град	90	88.746(2)
β, град	108.991(3)	66.390(3)
ү, град	90	62.648(4)
V, Å ³	1389.74(8)	1105.76(8)
Z	4	2
Размер кристалла, мм ³	$0.08 \times 0.02 \times 0.002$	$0.07 \times 0.05 \times 0.03$
μ , mm^{-1}	2.403	1.540
$D_{ m calc}$, г/см 3	2.347	1.908
Температура, К	293(2)	150(2)
Излучение	$\mathrm{Mo}K_lpha$	$\mathrm{Mo}\mathit{K}_{lpha}$
Область измерений 20, град	6.57-60.00	6.72-60.00
Общее число рефлексов	23653	12155
Число независимых рефлексов	4043	5855
Число рефлексов с $ F_{\rm o} \geqslant 4\sigma_{\rm F}$	3224	4956
$R_{ m int}$	0.0649	0.0243
R_{σ}	0.0384	0.0361
$R_1 (F_o \geqslant 4\sigma_F)$	0.0274	0.0341
$wR_2(F_0 \geqslant 4\sigma_F)$	0.0661	0.0848
<i>R</i> ₁ (все данные)	0.0384	0.0432
wR_2 (все данные)	0.0724	0.0911
S	1.022	1.041
$\rho_{\min}, \rho_{\max}, e/\mathring{A}^3$	-0.493, 0.792	-0.890, 1.699
CCDC	2376839	2376840

^{*} $R_1 = \sum ||F_{\rm o}| - |F_{\rm c}||/\sum |F_{\rm o}|;$ $wR_2 = \{\sum [w(F_{\rm o}^2 - F_{\rm c}^2)^2]/\sum [w(F_{\rm o}^2)^2]\}^{1/2};$ $w = 1/[\sigma^2(F_{\rm o}^2) + (aP)^2 + bP],$ где $P = (F_{\rm o}^2 + 2F_{\rm c}^2)/3;$ $s = \{\sum [w(F_{\rm o}^2 - F_{\rm c}^2)]/(n-p)\}^{1/2},$ где n – число рефлексов и p — число уточняемых параметров.

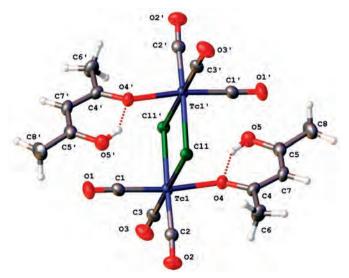
Основу кристаллической структуры 1 составляют димерные комплексы $[TcCl(CO)_4]_2$, которые можно представить как два Tc-центрированных октаэдра $TcCl_2(CO)_4$, соединенных по общему ребру из атомов Cl с образованием практически плоского четырехчленного цикла $[Tc_2(\mu-Cl)_2]$ (рис. 1). Торсионный угол ClTcClTc составляет 0.47° . В остальных ранее изученных соединениях $[MX(CO)_4]_2$ торсионный угол XMXM также близок к нулю. Димерный комплекс является симметрически независимой частью кристаллической структуры, а все формирующие его атомы занимают общие позиции. Элементы симметрии моноклинной пространственной группы $P2_1/c$ связывают между собой соседние эквивалентные комплексы. Димерные комплексы уложены в цепочки,

ориентированные вдоль [1 0 0] (рис. 2, a). Цепочки, в свою очередь, формируют слоистый мотив перпендикулярно [0 0 1] (рис. 2, δ). Экваториальные плоскости димеров в соседних цепочках ориентированы примерно параллельно плоскостям (-1 -3 5) и (-1 3 5). Связь Тс-содержащих комплексов друг с другом обеспечивается за счет ван-дер-ваальсовых взаимодействий.

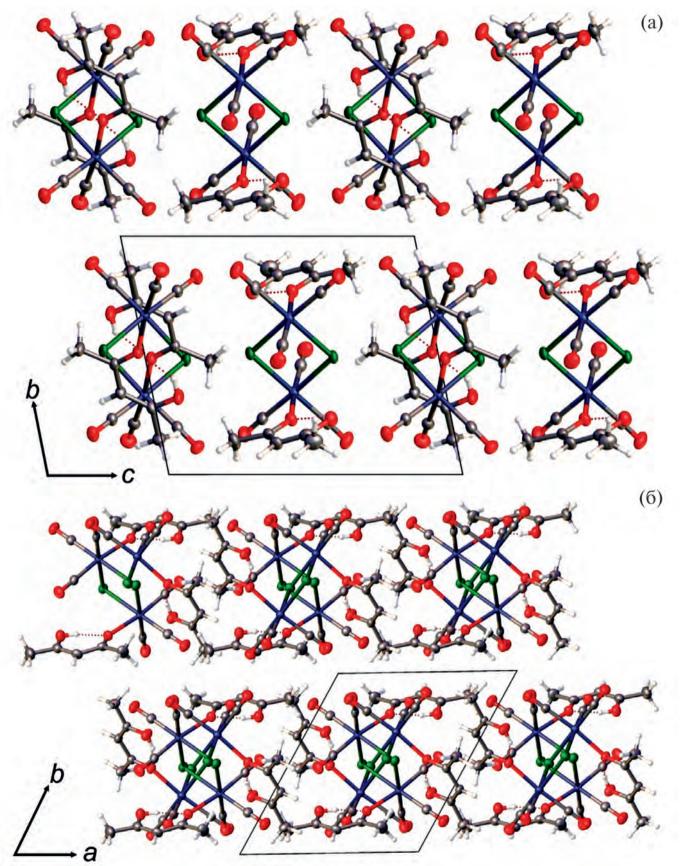
Характерной чертой комплекса [99 TcCl(CO) $_4$] $_2$, как и остальных соединений [MX(CO) $_4$] $_2$, является существенная неэквивалентность связей Tc—C: связи, находящиеся в *телес*-положении друг к другу, в среднем примерно на 0.1 Å длиннее связей Tc—C в *телес*-положении к атомам галогена. Данная тенденция, отмеченная нами также для соединений [99 TcX(CO) $_5$]

Связь	d, Å	Угол	ω, град	Угол	ω, град
Tc1-Cl1	2.5187(6)	Tc1-Cl1-Tc2	97.09(2)	C4-Tc1-C12	89.08(8)
Tc1-Cl2	2.5215(6)	Tc1-Cl2-Tc2	96.93(2)	C11-Tc2-C12	82.87(2)
Tc1-C1	1.994(3)	Cl1-Tc1-Cl2	83.11(2)	C5-Tc2-C11	89.97(8)
Tc1-C2	1.901(3)	C1-Tc1-Cl1	88.84(8)	C5-Tc2-C12	88.60(8)
Tc1-C3	1.907(3)	C1-Tc1-Cl2	90.02(9)	C5-Tc2-C8	179.28(11)
Tc1-C4	2.018(3)	C1-Tc1-C4	178.60(12)	C6-Tc2-Cl1	93.59(8)
Tc2-Cl1	2.5246(6)	C2-Tc1-Cl1	93.94(8)	C6-Tc2-C12	176.42(8)
Tc2-Cl2	2.5279(6)	C2-Tc1-Cl2	177.00(8)	C6-Tc2-C5	90.86(11)
Tc2-C5	2.011(3)	C2-Tc1-C1	90.47(12)	C6-Tc2-C8	89.78(11)
Tc2-C6	1.913(3)	C2-Tc1-C3	89.02(12)	C7-Tc2-Cl1	176.98(8)
Tc2-C7	1.899(3)	C2-Tc1-C4	90.38(11)	C7-Tc2-C12	94.11(8)
Tc2-C8	2.019(3)	C3-Tc1-Cl1	176.93(9)	C7-Tc2-C5	89.96(11)
		C3-Tc1-C12	93.93(8)	C7-Tc2-C6	89.43(12)
		C3-Tc1-C1	90.33(11)	C7-Tc2-C8	90.38(11)
		C3-Tc1-C4	90.81(11)	C8-Tc2-Cl1	89.66(8)
		C4-Tc1-Cl1	89.98(8)	C8-Tc2-C12	90.73(8)

Таблица 2. Избранные длины связей d и валентные углы ω в молекуле [TcCl(CO)₄]₂ (1)


(X = Cl, Br, I) [26, 27], очевидно, обусловлена взаимным *танс*-влиянием двух π-акцепторных лигандов. Соответственно, связи С=О, находящиеся в трансположении друг к другу, несколько короче (в среднем 1.126 Å), чем связи C=O в *транс*-положении к атомам Cl (в среднем 1.145 Å). Длина связи Tc-Cl (в среднем 2.523 Å) больше, чем длина концевой связи Tc-Cl в комплексе [99 TcCl(CO)₅] (2.4815 Å [26]), но меньше, чем длина связи Tc-µ₃-Cl в тетрамерном комплексе [99TcCl(CO)₃]₄ (2.5590 Å [28]). Однако, как и в случае иодидных аналогов [15], удлинение связи Тс-СІ при образовании мостиков сравнительно невелико, т.е. атом Cl при координации к атому Тс в значительной степени сохраняет свою донорную способность. Это объясняет высокую устойчивость мостиковых галогенидных комплексов технеция.

Биядерный комплекс [99 TcCl(CO) $_3$ (Hacac)] $_2$ является первым структурно охарактеризованным примером технециевых соединений типа [TcX(CO) $_3$ L] $_2$ (X — галогенид-ион, L — монодентатный нейтральный лиганд). Ряд соединения данного вида (L = $T\Gamma\Phi$, ацетонитрил, пиридин) был получен в нашей ранней работе [29], однако выводы об их строении были сделаны только на основании ИК спектров и результатов химического анализа. На рис. 3 показана молекулярная структура комплекса, в табл. 3 приведены длины связей и валентные углы в координационной сфере комплекса. Упаковка молекул [99 TcCl(CO) $_3$ (Hacac)] $_2$ в кристаллической ячейке показана на рис. 4.


Основу кристаллической структуры **2** также составляют димерные комплексы из двух Тс-центрированных октаэдров, связанных по общему ребру из атомов Cl (рис. 3). Как и в комплексе [99 TcCl(CO) $_{4}$]₂, структурным ядром данного

комплекса является четырехчленный цикл [$Tc_2(\mu-Cl)_2$]. Он является плоским, средняя длина связи Tc-Cl составляет 2.519 Å и мало отличается от средней длины связи Tc-Cl в комплексе [$^{99}TcCl(CO)_4$] $_2$. В кристаллической структуре 2 располагаются два кристаллографически неэквивалентных димера, геометрические различия между ними незначительны. Димерный комплекс является центросимметричным с расположением центра инверсии в середине параллелограмма TcClTcCl. Таким образом, кристаллографически неэквивалентной является только половина атомов, формирующих каждый из димеров.

Длины связей Tc-C (среднее значение 1.900 Å) практически одинаковы для связей, расположенных

Рис. 3. Молекулярная структура комплекса $[^{99}\text{TcCl(CO)}_3(\text{Hacac})]_2$.

Рис. 4. Упаковка молекул $[TcCl(CO)_3(Hacac)]_2$ в кристаллической решетке, проекция на плоскость bc (a) и ab (б). Показаны контуры элементарной ячейки.

РАДИОХИМИЯ том 66 № 5 2024

Связь	d, Å	Угол	ω, град	Угол	ω, град
Tc1-Cl1	2.5165(8)	Tc1-Cl1-Tc1'	97.85(3)	Tc1A-Cl1A-Tc1A'	97.64(2)
Tc1-Cl1'	2.5212(8)	Cl1-Tc1-Cl1'	82.15(3)	Cl1A-Tc1A-Cl1A'	82.36(2)
Tc1-O4	2.180(2)	O4-Tc1-Cl1	79.08(6)	O4A-Tc1A-C11A	81.37(6)
Tc1-C1	1.901(3)	O4-Tc1-Cl1'	85.51(6)	O4A-Tc1A-Cl1A'	85.67(6)
Tc1-C2	1.898(3)	C1-Tc1-Cl1	93.80(10)	C1A-Tc1A-C11A	93.69(10)
Tc1-C3	1.901(3)	C1-Tc1-Cl1'	93.18(10)	C1A-Tc1A-C11A'	91.46(10)
Tc1A-Cl1A	2.5192(8)	C1-Tc1-O4	172.26(11)	C1A-Tc1A-O4A	172.82(11)
Tc1A-Cl1A'	2.5098(7)	C1-Tc1-C3	87.19(14)	C1A-Tc1A-C2A	89.44(13)
Tc1A-O4A	2.172(2)	C2-Tc1-Cl1	94.82(10)	C2A-Tc1A-Cl1A'	176.09(10)
Tc1A-C1A	1.899(3)	C2-Tc1-Cl1'	176.84(10)	C2A-Tc1A-C11A	95.24(10)
Tc1A-C2A	1.904(3)	C2-Tc1-O4	99.82(11)	C2A-Tc1A-O4A	90.93(11)
Tc1A-C3A	1.892(3)	C2-Tc1-C1	87.92(14)	C3A-Tc1A-C11A	176.42(9)
		C2-Tc1-C3	86.08(13)	C3A-Tc1A-Cl1A'	94.09(10)
		C3-Tc1-C11	178.68(9)	C3A-Tc1A-O4A	98.87(11)
		C3-Tc1-Cl1'	96.93(10)	C3A-Tc1A-C1A	88.31(14)
		C3-Tc1-O4	93.40(11)	C3A-Tc1A-C2A	88.32(13)

Таблица 3. Избранные длины связей d и валентные углы ω в молекулах [99 TcCl(CO) $_3$ (Hacac)] $_2$ (2)

в *транс*-положении к атомам Cl и O, и близки к длинам связей Tc—C в *транс*-положении к атомам Cl в комплексе [99 TcCl(CO)₄], (среднее значение 1.905 Å).

Молекулы Насас координированы монодентатно через карбонильный атом кислорода (О4) кетоенольной формы ацетилацетона. Связь Тс-О (средняя длина 2.176 Å) примерно на 0.05 Å длиннее, чем в комплексе с бидентатно координированным анионом асас (2.128 Å [2]). Молекулы Насас располагаются в апикальных позициях октаэдров Тс в трансположении друг к другу относительно кольца $[Tc_2(\mu-Cl)_2]$. Енольная гидроксигруппа О5H образует Н-связь с карбонильным атомом кислорода той же молекулы Hacac $(O4 \cdot \cdot \cdot O5 = 2.561(4) \text{ Å: табл. 4. рис. 3}).$ Плоскости ацетилацетонатных лигандов соседних димеров расположены параллельно друг другу. В случае первого димера плоскости располагаются на нормальном расстоянии между неполными циклами (O4-C4-C7-C5-O5) молекул 3.512(4) Å с параллельным смещением 1.70(1) Å. В случае второго димера реализуется более дальний нормальный контакт между неполными циклами молекул (О4А-С4А-C7A-C5A-O5A) - 3.647(4) Å, но с меньшим смещением -0.67(1) Å. Таким образом, можно определить данные контакты как стекинг-взаимодействие, причем в первом случае система контактов организована примерно вдоль [1-42], а во втором — примерно вдоль 12 2 11. Димерные комплексы в структуре 2 формируют цепочки, вытянутые вдоль [1 0 0], которые, в свою очередь, уложены в слои, ориентированные параллельно (0 1 0) (рис. 4). Между собой димеры связываются за счет слабых водородных связей С-Н…О и ван-дер-ваальсовых взаимодействий (табл. 4), причем наиболее плотную систему Н-связей образует второй димер, все атомы Н которого формируют

Таблица 4. Водородные связи в структуре $[TcCl(CO)_3(Hacac)]_2$ (2)

D–H···A	D–H, Å	H···A, Å	D···A, Å	Угол DHA,
				град
O5-H5···O4	0.84	1.84	2.562(3)	142.8
O5-H5···C11	0.84	2.91	3.495(3)	128.6
O5A-H5A···O4A	0.84	1.84	2.560(3)	143.1
O5A-H5A···Cl1A	0.84	3.06	3.644(3)	128.7
C6-H6A···O1A	0.98	2.70	3.585(5)	150.0
C6-H6B···O3A	0.98	3.01	3.873(5)	147.3
C6-H6C···C11	0.98	2.89	3.662(4)	136.2
C6-H6C···O5A	0.98	2.54	3.370(5)	142.8
C6A-H6AA···O1	0.98	2.65	3.450(5)	139.5
C6A-H6AA···Cl1A	0.98	2.95	3.681(4)	132.5
C6A-H6AB···O5	0.98	2.69	3.590(4)	153.5
C6A-H6AA···O2	0.98	2.68	3.509(5)	142.8
C7A-H7A···O5	0.95	2.68	3.525(4)	148.0
C8A-H8AA···O2	0.98	2.67	3.391(5)	130.9
C8A-H8AB···O2A	0.98	2.67	3.553(5)	149.5
C8A-H8AC···O1A	0.98	2.68	3.554(5)	148.6

связи, тогда как у первого димера слабые H-связи образует только одна группа ${\rm CH_3}$ (табл. 4).

транс-Положение лигандов L относительно кольца $[M_2X_2]$ имеет место в подавляющем большинстве структурно изученных родственных комплексов $[MX(CO)_3L]_2$ (M=Mn,Re;X=Cl,Br). Оно отмечено в комплексах Mn и Re с L= тетрагидрофуран [30,31], ацетонитрил [32,33], пивалонитрил [34], пиридин [35], производное бензимидазола

[36], трис(циклогексил)фосфин [37], 3,3-диметил- не изученного методом рентгеноструктурного анатиетан [38]. Нами найдено только два примера комплексов с иис-расположением монодентатных лигандов L относительно кольца $[M_2X_2]$ [39, 40], причем последний из них также представляет собой комплекс с нейтральной молекулой β-дикетона — $[ReCl(CO)_3(бензоилацетон)]_2$. В данном комплексе, как и в нашем комплексе $[^{99}TeCl(CO)_3(Hacac)]_2$, дикетон координирован монодентатно в кетоенольной форме через ацетильный атом кислорода, однако реализуется другой стереоизомер. Стабилизация комплекса с иис-расположением молекул дикетона может быть связана с π - π -взаимодействиями между кетоенольными и фенильными группами. В структуре [40] реализуется внутримолекулярный стекинг неполных колец кетоенольного фрагмента (нормальное расстояние 3.311(5) Å со смещением 0.09(1) Å). В межмолекулярный стекинг вовлечены бензольное кольцо одного димера и неполное кольцо кетоенольного фрагмента соседнего димера (нормальное расстояние 3.531(5) Å со смещением 1.69(1) Å). Таким образом, в структуре [40] реализуется спиральная система стекинговых взаимодействий комплексов вдоль [0 0 1]. Отметим также, что в данном комплексе торсионный угол ClReClRe аномально велик (9.46°), тогда как в комплексах с *транс*-положением лигандов L кольцо MXMX плоское.

В комплексах [МХ(СО)₃L], с О-донорным лигандом L (тетрагидрофуран, β-дикетон) разница в длинах связи М-С с группами СО, находящимися в транс-положении к атому галогена и к органическому лиганду, незначительна. Она становится заметной при переходе к комплексам [ReCl(CO)₂L] с лигандами L, проявляющими определенные π-акцепторные свойства: фосфином [37] и карбеном [39] (связь Тс-С в транс-положении к органическому лиганду длиннее на 0.05-0.07 Å), приближаясь к уровню, характерному для [ReCl(CO)₄] (около 0.08 Å).

В заключение кратко обсудим вероятный путь образования комплекса [99 TcCl(CO)₃(Hacac)]₂. По-видимому, источником хлора и водорода (метод рентгеноструктурного анализа не позволяет различать изотопы атомов) является дейтерохлороформ, добавляемый к раствору вещества в CCl₄ для записи спектра ЯМР. К сожалению, попытки целенаправленного синтеза данного комплекса по реакции [99TcCl(CO)₅] или [99TcCl(CO)₄], с чистым ацетилацетоном или его раствором в CCl_4 или CH_2Cl_2 с варьированием соотношения реагентов, температуры и времени реакции, а также по реакции [99Тс(acac) (CO)₄] в CCl₄ с сухим HCl не увенчались успехом, выделить индивидуальный кристаллический комплекс из реакционных смесей не удалось.

ЗАКЛЮЧЕНИЕ

Установлены структуры ранее не известного комплекса $[^{99}$ TcCl(CO)₃(Hacac)], и известного, но ранее

лиза комплекса [99 TcCl(CO)₄]₂. Проведен сравнительный анализ с ранее изученными родственными комплексами марганца, технеция и рения. Обсуждены проявления эффекта транс-влияния в структурах комплексов. Комплекс [99TcCl(CO)₃(Hacac)]₂ является первым структурно исследованным примером биядерных технециевых комплексов вида $[^{99}$ TcX(CO)₂L] с четырехчленным ядром $[\text{Tc}_2(\mu-X)_2]$, где X =галоген, L -органический лиганд. Образование данного комплекса указывает на ограниченную устойчивость карбонил-β-дикетонатных комплексов технеция(I).

БЛАГОДАРНОСТИ

Рентгеновские исследования проведены с использованием оборудования ресурсного центра СПбГУ «Рентгенодифракционные методы исследования» (проект 118201839).

ФИНАНСИРОВАНИЕ РАБОТЫ

Исследование выполнено при финансовой поддержке Российского научного фонда, проект 22-13-00057.

КОНФЛИКТ ИНТЕРЕСОВ

Авторы заявляют об отсутствии конфликта интересов в связи с публикацией данной статьи.

СПИСОК ЛИТЕРАТУРЫ

- 1. Борисова И.В., Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н., Щербакова Л.Л. // Радиохимия. 1991. T. 33. № 4. C. 28–32.
- 2. Сидоренко Г.В., Григорьев М.С., Гуржий В.В., Кривовичев С.В., Мирославов А.Е., Суглобов Д.Н. // Радиохимия. 2010. Т. 52. № 2. С. 126-131; Sidorenko G.V., Grigor'ev M.S., Gurzhiy V.V., Krivovichev S.V., Miroslavov A.E., Suglobov D.N. // Radiochemistry. 2010. Vol. 52. N 2. P. 145-151. https://doi.org/10.1134/S1066362210020050
- 3. Sagnou M., Benaki D., Triantis C., Tsotakos T., Psycharis V., Raptopoulou C.P., Pirmettis I., Papadopoulos M., Pelecanou M. // Inorg. Chem. 2011. Vol. 50. N 4. P. 1295-1303. https://doi.org/10.1021/ic102228u
- 4. Triantis C., Tsotakos T., Tsoukalas C., Sagnou M., Raptopoulou C., Terzis A., Psycharis V., Pelecanou M., Pirmettis I., Papadopoulos M. // Inorg. Chem. 2013. Vol. 52. N 22. P. 12995-13003. https://doi.org/10.1021/ic401503b
- 5. Benny P.D., Fugate G.A., Ganguly T., Twamley B., Bučar D.-K., MacGillivray L.R. // Inorg. Chim. Acta. 2011. Vol. 365. N 1. P. 356-362. https://doi.org/10.1016/j.ica.2010.09.050

- 6. Sagnou M., Tsoukalas C., Triantis C., Raptopoulou C.P., Terzis A., Pirmettis I., Pelecanou M., Papadopoulos M. // Inorg. Chim. Acta. 2010. Vol. 363. N 8. P. 1649-1653. https://doi.org/10.1016/j.ica.2010.01.004
- 7. Miroslavov A.E., Lumpov A.A., Sidorenko G.V., Levitskaya E.M., Gorshkov N.I., Suglobov D.N., Alberto R., Braband H., Gurzhiv V.V., Krivovichev S.V., Tananaev I.G. // J. Organomet. Chem. 2008. Vol. 693. N 1. P. 4–10.

https://doi.org/10.1016/j.jorganchem.2007.09.032

- 8. Акопов Г.А., Криницын А.П., Царенко А. Φ . // Радиохимия. 1987. Т. 29. № 5. С. 589-593.
- 9. Мирославов А.Е., Сидоренко Г.В., Борисова И.В., Легин Е.К., Лычев А.А., Суглобов Д.Н. // Радиохимия. 1990. T. 32. № 6. C. 14-21.
- 10. CrysAlisPro. Rigaku Oxford Diffraction. Version 1.171.42.102a. 2023.
- 11. Sheldrick G.M. // Acta Crystallogr., Sect. A. 2015. Vol. 71. P. 3-8. https://doi.org/10.1107/S2053273314026370
- 12. Sheldrick G.M. // Acta Crystallogr., Sect. C. 2015. Vol. 71. P. 3-8. https://doi.org/10.1107/S2053229614024218
- 13. Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. // J. Appl. Crystallogr. 2009. Vol. 42. N 2. P. 339-341.
- 14. Hileman J.C., Huggins D.K., Kaesz H.D. // Inorg. Chem. 1962. Vol. 1. N 4. P. 933-938. https://doi.org/10.1021/ic50004a048
- 15. Григорьев М.С., Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н. // Радиохимия. 1997. Т. 39. № 3. С. 207-209; Grigor'ev M.S., Miroslavov A.E., Sidorenko G.V., Suglobov D.N. // Radiochemistry. 1997. Vol. 39. N 3. P. 205-207.
- 16. Vega A., Calvo V., Manzur J., Spodine E., Saillard J.-Y. // Inorg. Chem. 2002. Vol. 41. N 21. P. 5382-5387. https://doi.org/10.1021/ic020234e
- 17. Zeng H., Ju J., Hua R. // Tetrahedron Lett. 2011. Vol. 52. N 30. P. 3926-3928. https://doi.org/10.1016/j.tetlet.2011.05.093
- 18. Dahl L.F., Wei C.-H. // Acta Crystallogr. 1963. Vol. 16. N 7. P. 611-616. https://doi.org/10.1107/S0365110X6300164X
- 19. Darst K.P., Lenhert P.G., Lukehart C.M., Warfield L.T. // J. Organomet. Chem. 1980. Vol. 195. N 3. P. 317–324. https://doi.org/10.1016/S0022-328X(00)93314-X
- 20. Clegg W., Morton S. // Acta Crystallogr., Sect. B. 1978. Vol. 34. N 5. P. 1707-1709. https://doi.org/10.1107/S0567740878006421
- 21. Haghiri A., Lerner H.-W., Bolte M. // Acta Crystallogr., Sect. E. 2006. Vol. 62. N 3. P. i72-i73. https://doi.org/10.1107/S1600536806005885
- 22. Yan Z., Yuan X., Zhao Y., Zhu C., Xie J. // Angew. Chem. Int. Ed. 2018. Vol. 57. N 39. P. 12906-12910. https://doi.org/10.1002/anie.201807851

- 23. Wang D., Dong J., Fan W., Yuan X., Han J., Xie J. // Angew. Chem. Int. Ed. 2020. Vol. 59. N 22. P. 8430-8434. https://doi.org/10.1002/anie.201916305
- 24. Murray B.S., Prior T.J. CCDC 2089065: Experimental Crystal Structure Determination, 2021. https://doi.org/10.5517/CCDC.CSD.CC283V6G
- 25. Davies J.A., El-Ghanam M., Pinkerton A.A. // Acta Crystallogr., Sect. C. 1991. Vol. 47. N 7. P. 1356–1358. https://doi.org/10.1107/S010827019100015X
- 26. Сидоренко Г.В., Гуржий В.В., Мирославов А.Е., Сизова О.В., Кривовичев С.В., Лумпов А.А., Суглобов Д.Н. // Радиохимия. 2009. Т. 51. № 3. С. 207-212; Sidorenko G.V., Gurzhii V.V., Miroslavov A.E., Sizova O.V., Krivovichev S.V., Lumpov A.A., Suglobov D.N. // Radiochemistry. 2009. Vol. 51. N 3. P. 237-243.
 - https://doi.org/10.1134/S1066362209030047
- 27. Григорьев М.С., Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н. // Радиохимия. 1997. Т. 39. № 3. С. 204— 206; Grigor'ev M.S., Miroslavov A.E., Sidorenko G.V., Suglobov D.N. // Radiochemistry. 1997. Vol. 39. N 3. P. 202-204.
- 28. Батурин Н.А., Григорьев М.С., Крючков С.В., Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н. // Радиохимия. 1994. Т. 36. № 3. С. 199-201.
- 29. Борисова И.В., Мирославов А.Е., Сидоренко Г.В., Суглобов Д.Н. // Радиохимия. 1991. Т. 33. № 3. С. 1–8.
- 30. Wong A.C.C., Wilkinson G., Hussain B., Motevalli M., Hursthouse M.B. // Polyhedron. 1988. Vol. 7. N 15. P. 1363-1370. https://doi.org/10.1016/S0277-5387(00)80386-1
- 31. Calderazzo F., Mavani I.P., Vitali D., Bernal I., Korp J.D., Atwood J.L. // J. Organomet. Chem. 1978. Vol. 160. N 1. P. 207-222. https://doi.org/10.1016/S0022-328X(00)91214-2
- 32. Carballo R., Garcia-Martinez E., Pereiras-Gabian G., Vazquez-Lopez E.M. // Z. Naturforsch. B. 2003. Vol. 58. P. 1021–1023.
- 33. Mukiza J., Gerber T.I.A., Hosten E.C., Betz R. // Z. Kristallogr.—New Cryst. Struct. 2014. Vol. 229. N 4. P. 355-356. https://doi.org/10.1515/ncrs-2014-0184
- 34. Forshaw A.P., Bontchev R.P., Smith J.M. // Inorg. Chem. 2007. Vol. 46. N 10. P. 3792-3794. https://doi.org/10.1021/ic070187w
- 35. Zdanovich V.I., Lobanova I.A., Petrovskii P.V., Batsanov A.S., Struchkov Yu.T., Kolobova N.E. // Russ. Chem. Bull. 1987. Vol. 36. P. 1500-1503. https://doi.org/10.1007/BF01557534
- 36. Van Niekerk X., Gerber T.I.A., Hosten E.C. // Polyhedron. 2021. Vol. 203. ID 115171. https://doi.org/10.1016/j.poly.2021.115171
- 37. Flörke U. // Acta Crystallogr., Sect. C. 1999. Vol. 55. IUC 9900119. https://doi.org/10.1107/S0108270199098777
- 38. Adams R.D., Belinski J.A., Chen L. // Organometallics. 1992. Vol. 11. N 12. P. 4104-4108. https://doi.org/10.1021/om00060a029

39. *Bezuidenhout D.I., Lotz S., Landman M., Liles D.C.* // Inorg. Chem. 2011. Vol. 50. N 4. P. 1521–1533. https://doi.org/10.1021/ic101784w 40. *Fredette M.C., Lock C.J.L.* // Can. J. Chem. 1973. Vol. 51. N 7. P. 1116–1122. https://doi.org/10.1139/v73-165

Crystal and Molecular Structure of Binuclear Technetium Carbonyl Chloride Complexes: $[^{99}\text{TcCl}(CO)_3(C_5H_8O_2)]_2$ ($C_5H_8O_2$ = Acetylacetone) and $[^{99}\text{TcCl}(CO)_4]_2$

G. V. Sidorenko^{a, b, *}, A. E. Miroslavov^{a-c}, V. V. Gurzhiy^c, A. R. Kochergina^{a-c}, A. P. Sakhonenkova^{a, b}, M. Yu. Tyupina^{a, b}, L. S. Chistyi^d, and E. A. Pechertseva^a

^aKhlopin Radium Institute, 2-i Murinskii pr. 28, St. Petersburg, 194021 Russia ^bOzyorsk Institute of Technology, Branch of National Research Nuclear University MEPhI, pr. Pobedy 48, Ozyorsk, Chelvabinsk oblast, 456783 Russia

^cSt. Petersburg State University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia
^dResearch Institute of Hygiene, Professional Pathology, and Human Ecology, Federal Medical-Biological Agency, Zavodskaya ul. 6/2, korp. 93, Kuzmolovskii, Vsevolozhsk raion, Leningrad oblast, 188663 Russia

*e-mail: gevasid@mail.ru

Received August 15, 2024; revised August 23, 2024; accepted August 23, 2024

The crystal and molecular structures of the complex $[^{99}\text{TcCl}(CO)_3(C_5H_8O_2)]_2$ ($C_5H_8O_2$ = Hacac = acetylacetone) formed in the course of prolonged standing of a $[^{99}\text{Tc}(acac)(CO)_4]$ solution in $CCl_4/CDCl_3$ and of its analog containing no organic ligand, $[^{99}\text{TcCl}(CO)_4]_2$, were determined. Both complexes contain a $[\text{Tc}_2(\mu\text{-Cl})_2]$ four-membered ring. The remaining sites in the coordination sphere of the Tc atom are occupied by carbonyl ligands, and in the case of $[^{99}\text{TcCl}(CO)_3(\text{Hacac})]_2$, also by the neutral acetylacetone molecule. The Hacac molecules in the binuclear complex are in the *cis* position to the Cl atoms in the octahedral surrounding of the Tc atoms and in the *trans* position to each other relative to the $[\text{Tc}_2(\mu\text{-Cl})_2]$ ring. A comparative analysis of the geometries of the complexes and their known analogs was performed.

Keywords: technetium, carbonyl complexes, bridging halide complexes, acetylacetone, crystal and molecular structure.