On the Number of Edges of a Uniform Hypergraph with a Range of Allowed Intersections
- 作者: Bobu A.V.1, Kupriyanov A.E.1, Raigorodskii A.M.1,2,3
-
隶属关系:
- Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
- Department of Innovation and High Technology
- Institute of Mathematics and Computer Science
- 期: 卷 53, 编号 4 (2017)
- 页面: 319-342
- 栏目: Coding Theory
- URL: https://journals.rcsi.science/0032-9460/article/view/166446
- DOI: https://doi.org/10.1134/S0032946017040020
- ID: 166446
如何引用文章
详细
We study the quantity p(n, k, t1, t2) equal to the maximum number of edges in a k-uniform hypergraph having the property that all cardinalities of pairwise intersections of edges lie in the interval [t1, t2]. We present previously known upper and lower bounds on this quantity and analyze their interrelations. We obtain new bounds on p(n, k, t1, t2) and consider their possible applications in combinatorial geometry problems. For some values of the parameters we explicitly evaluate the quantity in question. We also give a new bound on the size of a constant-weight error-correcting code.
作者简介
A. Bobu
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
编辑信件的主要联系方式.
Email: a.v.bobu@gmail.com
俄罗斯联邦, Moscow
A. Kupriyanov
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics
Email: a.v.bobu@gmail.com
俄罗斯联邦, Moscow
A. Raigorodskii
Department of Mathematical Statistics and Random Processes, Faculty of Mechanics and Mathematics; Department of Innovation and High Technology; Institute of Mathematics and Computer Science
Email: a.v.bobu@gmail.com
俄罗斯联邦, Moscow; Moscow; Ulan-Ude
补充文件
