Upper bound on the minimum distance of LDPC codes over GF(q) based on counting the number of syndromes
- 作者: Frolov A.A.1
-
隶属关系:
- Kharkevich Institute for Information Transmission Problems
- 期: 卷 52, 编号 1 (2016)
- 页面: 6-13
- 栏目: Coding Theory
- URL: https://journals.rcsi.science/0032-9460/article/view/166253
- DOI: https://doi.org/10.1134/S0032946016010026
- ID: 166253
如何引用文章
详细
In [1] a syndrome counting based upper bound on the minimum distance of regular binary LDPC codes is given. In this paper we extend the bound to the case of irregular and generalized LDPC codes over GF(q). A comparison with the lower bound for LDPC codes over GF(q), upper bound for the codes over GF(q), and the shortening upper bound for LDPC codes is made. The new bound is shown to lie under the Gilbert–Varshamov bound at high rates.
作者简介
A. Frolov
Kharkevich Institute for Information Transmission Problems
编辑信件的主要联系方式.
Email: alexey.frolov@iitp.ru
俄罗斯联邦, Moscow
补充文件
