General Independence Sets in Random Strongly Sparse Hypergraphs


Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

We analyze the asymptotic behavior of the j-independence number of a random k-uniform hypergraph H(n, k, p) in the binomial model. We prove that in the strongly sparse case, i.e., where \(p = c/\left( \begin{gathered}
n - 1 \hfill \\
k - 1 \hfill \\
\end{gathered} \right)\)
for a positive constant 0 < c ≤ 1/(k − 1), there exists a constant γ(k, j, c) > 0 such that the j-independence number αj (H(n, k, p)) obeys the law of large numbers \(\frac{{{\alpha _j}\left( {H\left( {n,k,p} \right)} \right)}}{n}\xrightarrow{P}\gamma \left( {k,j,c} \right)asn \to + \infty \) Moreover, we explicitly present γ(k, j, c) as a function of a solution of some transcendental equation.

Авторлар туралы

A. Semenov

Department of Probability Theory, Faculty of Mechanics and Mathematics; Chair of Discrete Mathematics, Department of Innovation and High Technology

Хат алмасуға жауапты Автор.
Email: alexsemenov1992@mail.ru
Ресей, Moscow; Moscow

D. Shabanov

Department of Probability Theory, Faculty of Mechanics and Mathematics; Laboratory of Advanced Combinatorics and Network Applications

Email: alexsemenov1992@mail.ru
Ресей, Moscow; Moscow

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Pleiades Publishing, Inc., 2018