Моделирование осесимметричной формы равновесной капли, покоящейся на идеально гладком горизонтальном основании

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Сформулирована задача расчета равновесной осесимметричной формы жидкой капли, покоящейся на недеформируемой горизонтальной плоскости. Впервые получено уравнение баланса сил, действующих на каплю в вертикальном направлении и замыкающее постановку рассматриваемой задачи. Разработан высокоточный численный метод решения поставленной нелинейной задачи. Исследована зависимость углов смачивания капель от варьирования входных данных задачи: химического состава капли, давления газа, силы дополнительного слабого взаимодействия (например, ван-дер-ваальсовых или электрохимического происхождения). Для капель малых диаметров показана возможность существования двух решений, которым соответствуют существенно разные углы смачивания: в первом решении углы смачивания меньше 90°, а во втором – больше 90°, достигая значений 160° и более. Существование двух равновесных форм капли малого диаметра подтверждено натурными экспериментами. Равновесные формы капель больших диаметров могут существовать только при наличии дополнительной слабой отталкивающей силы между жидкостью и опорной поверхностью, имеющей интенсивность порядка 10-7...10-5 Па. При этом для капель больших диаметров существует только одно решение.

Полный текст

Доступ закрыт

Об авторах

А. П. Янковский

Институт теоретической и прикладной механики им. С.А. Христиановича СО РАН

Автор, ответственный за переписку.
Email: yankovsky_ap@itam.nsc.ru
Россия, Новосибирск

Список литературы

  1. Войтик О.Л., Делендик К.И., Коляго Н.В., Рощин Л.Ю. Факторы, влияющие на характеристики смачивания частей паровой камеры // Инж.-физ. ж. 2020. Т. 93. № 5. С. 1126–1133.
  2. Матюхин С.И., Фроленков К.Ю. Форма капель жидкости, помещенных на твердую горизонтальную поверхность // Конденс. среды и межфазные границы. 2013. Т. 15. № 3. С. 292–304.
  3. Марчук И.В., Чеверда В.В., Стрижак П.А., Кабов О.А. Определение поверхностного натяжения и контактного угла смачивания по форме поверхности осесимметричных пузырей и капель // Теплофиз. и аэромех. 2015. Т. 22. № 3. С. 311–317.
  4. Bai M., Kazi H., Zhang X., Liu J., Hussain T. Robust hydrophobic surfaces from suspension HVOF thermal sprayed rare-earth oxide ceramics coatings // Article in Sci. Rep. 2018. V. 8. № 1. P. 6973-1–6973-8.
  5. Xu P., Coyle T.W., Pershin L., Mostaghimi J. Fabrication of superhydrophobic ceramic coatings via solution precursor plasma spray under atmospheric and low-pressure conditions // J. Therm. Spray Tech. 2019. V. 28. P. 242–254.
  6. Гуляев И.П., Кузьмин В.И., Ковалев О.Б. Высокогидрофобные керамические покрытия, получаемые методом плазменного напыления порошковых материалов // Теплофиз. и аэромех. 2020. Т. 27. № 4. С. 615–625.
  7. Contact Angle, Wettability, and Adhesion / ed. by Gould R.F. Washington: Amer. Chem. Soc. Advances in Chem. Ser, 1964.
  8. Финн Р. Равновесные капиллярные поверхности. Математическая теория. М.: Мир, 1989. 312 с.
  9. Русаков А.И., Прохоров В.А. Межфазная тензометрия. СПб.: Химия, 1994. 398 с.
  10. Саранин В.А. Равновесие жидкостей и его устойчивость. Простая теория и доступные опыты. М.: Ин-т компьют. исслед., 2002. С. 73–76.
  11. De Gennes P.G., Brochard-Wyart F., Quere D. Capillarity and Wetting Phenomena. Berlin: Springer, 2004.
  12. Kupershtokh A.L., Lazebryi D.B. Contact angles in the presence of an electrical field // J. of Phys.: Conf. Ser. 2020. 1675. 012106. P. 1–6. https://doi.org/10.1088/1742-6596/1675/1/012106
  13. Del Rio O.I., Neumann A.W. Axisymmetric drop shape analysis: computational methods for the measurement of interfacial properties from the shape and dimensions of pendant and sessile drops // J. of Colloid&Interface Sci. 1997. V. 196. № 2. P. 136–147.
  14. Zholob S.A., Makievski A.V., Miller R., Fainerman V.B. Optimization of calculation methods for determination of surface tensions by drop profile analysis tensiometry // Advances in Colloid&Interface Sci. 2007. № 134. 135. P. 332–329.
  15. Кармо М.П. Дифференциальная геометрия кривых и поверхностей. М.;Ижевск: Ин-т компьют. исслед., 2013. 608 с.
  16. Новожилов В.В. Теория тонких оболочек. СПб.: Изд-во С.-Петерб. ун-та, 2010. 380 с.
  17. Власов В.З., Леонтьев Н.Н. Балки, плиты и оболочки на упругом основании. М.: Физматгиз, 1960. 491 с.
  18. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
  19. Холл Дж., Уатт Дж. Современные численные методы решения обыкновенных дифференциальных уравнений. М.: Мир, 1979. 312 с.
  20. Деккер К., Вервер Я. Устойчивость методов Рунге–Кутты для жестких нелинейных дифференциальных уравнений. М.: Мир, 1988. 334 с.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Меридиональное сечение равновесной осесимметричной капли, покоящаяся на горизонтальной недеформируемой подложке

Скачать (116KB)
3. Рис. 2. Краевая точка и ее окрестность в капле и подложке (а), только в капле (б) и только в подложке (в) с указанием системы сил, приложенных к этой точке

Скачать (125KB)
4. Рис. 3. Форма меридиана капли и его геометрические характеристики

Скачать (84KB)
5. Рис. 4. Меридиональное сечение капли с краевым углом смачивания меньше 90° и система сил, приложенных к ней

Скачать (108KB)
6. Рис. 5. Профиль капли с краевым углом смачивания больше 90° (а) и нижняя часть этой капли после применения метода сечения (б) с указанием системы сил, приложенных к ней

Скачать (89KB)
7. Рис. 6. Зависимость невязки в уравнении силового баланса (2.20) от величины избыточного давления в вершине водяной капли: а)  для капель с эталонным диаметром 1 и 2 мм; б)  для капель с эталонным диаметром 3 и 3.894 мм

Скачать (120KB)
8. Рис. 7. Расчетные меридиональные сечения водяных капель разных эталонных диаметров: a) первый тип решения; б) второй тип решения

Скачать (168KB)
9. Рис. 8. Расчетные меридиональные сечения капель этилового спирта разных эталонных диаметров: a) первый тип решения; б) второй тип решения

Скачать (108KB)
10. Рис. 9. Две равновесные формы водяных капель одного и того же эталонного диаметра , покоящихся на подложке из поликарбоната

Скачать (72KB)
11. Рис. 10. Расчетные меридиональные сечения водяных капель с эталонным диаметром  при наличии дополнительного взаимодействия  между жидкостью и подложкой

Скачать (108KB)
12. Рис. 11. Расчетные меридиональные сечения водяных капель больших эталонных диаметров

Скачать (47KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».