Исследование волны термической детонации в смеси капель воды с расплавленным свинцом

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Исследованы закономерности волны термического взаимодействия капель воды, находящихся в высокотемпературном расплаве свинца, или волны термической детонации. Вследствие вскипания воды на поверхности свинца обе жидкости (фазы) разделены паровой пленкой. Используется одномерная модель взаимодействующих и взаимопроникающих континуумов, которая описывает динамику каждой жидкости введением специального поля, характеризующегося своими скоростью, температурой и объемной долей. Скорость волны определяется равенством скоростей и температур фаз в плоскости Чепмена–Жуге. Параметры на скачке давления вычисляются из условий на разрыве и являются граничными условиями для интегрирования уравнений сохранения в зоне взаимодействия капель воды с расплавом. Получающаяся структура волны термической детонации характеризуется тем, что максимальное давление находится на некотором удалении от ударной волны.

Об авторах

В. И. Мелихов

НИУ “МЭИ”

Автор, ответственный за переписку.
Email: MelikhovVI@mpei.ru
Россия, Москва

О. И. Мелихов

НИУ “МЭИ”

Автор, ответственный за переписку.
Email: MelikhovOI@mpei.ru
Россия, Москва

Салех Башар

НИУ “МЭИ”

Автор, ответственный за переписку.
Email: basharsaleh10@gmail.com
Россия, Москва

Список литературы

  1. Зельдович Я.Б., Компанеец А.С. Теория детонации. М.: Гостехиздат, 1955. 268 с.
  2. Ландау Л.Д., Лифшиц Е.М. Теоретическая физика: Учебное пособие. В 10 тт. Т. VI. Гидродинамика. М.: Наука, 1986. 736 с.
  3. Крайко А.Н. Неустойчивость стационарных течений в каналах переменной площади поперечного сечения с детонационной волной Чемпена–Жуге // ПММ. 2019. Т. 83. № 3. С. 354–369.
  4. Вайнштейн П.Б., Нигматулин Р.И., Попов В.В. Переход конвективного горения аэровзвесей унитарного топлива в детонацию // Физика горения и взрыва. 1980. № 5. С. 102–106.
  5. Нигматулин Р.И., Вайнштейн П.Б., Ахатов И.Ш. Структура стационарных детонационных волн в смесях газа с частицами унитарного топлива // в сб.: Химическая физика процессов горения и взрыва. Детонация. Черноголовка: Ин-т хим. физ. АН СССР, 1980. 128 с. С. 96–99.
  6. Ахатов И.Ш., Вайнштейн П.Б., Нигматулин Р.И. Структура детонационных волн в газовзвесях унитарного топлива // Изв. АН СССР. МЖГ. 1981. № 5. С. 47–53.
  7. Нигматулин Р.И. Динамика многофазных сред. Ч. I. М.: Наука, 1987. 464 с.
  8. Board S.J., Hall R.W., Hall R.S. Detonation of a fuel coolant explosion // Nature. 1975. V. 254. P. 319–321.
  9. Мелихов В.И., Мелихов О.И., Якуш С.Е. Гидродинамика и теплофизика паровых взрывов. М.: ИПМех РАН, 2020. 276 с.
  10. Мелихов В.И., Мелихов О.И., Якуш С.Е. Термическое взаимодействие высокотемпературных расплавов с жидкостями // ТВТ. 2022. Т. 60. № 2. С. 280–318.
  11. Sharon A., Bankoff S.G. On the existence of steady supercritical plane thermal detonations // Int. J. Heat Mass Trans. 1981. V. 24. P. 1561–1572.
  12. Frost D.L., Lee J.H.S., Ciccarelli G. The use of Hugoniot analysis for the propagation of vapor explosion waves // Shock Waves. 1991. V. 1. P. 99–110.
  13. Iskhakov A.S., Melikhov V.I., Melikhov O.I., Yakush S.E., Le Tran Chung. Hugoniot analysis of experimental data on steam explosion in stratified melt-coolant configuration // Nucl. Engng.&Design. 2019. V. 347. P. 151–157.
  14. Dinh T.N. Multiphase flow phenomena of steam generator tube rupture in a lead-cooled reactor system: a scoping analysis // Proc. ICAPP 2007. Paper No. 7497. May 13–18, 2007. Nice, France.
  15. Iskhakov A.S., Melikhov V.I., Melikhov O.I. Hugoniot analysis of energetic molten lead water interaction // Annals of Nucl. Energy. 2019. V. 129. P. 437–449.
  16. Sobolev V. Database of thermophysical properties of liquid metal coolants for GEN-IV. Sodium, lead, lead-bismuth eutectic (and bismuth) // in: Belgian Nuclear Res. Centre. Sci. Rep. SCK CEN-BLG-1069. Boeretang, Belgium. 2010. P. 175.
  17. IAPWS (The Int. Assoc. for the Properties of Water&Steam). http://www.iapws.org
  18. Pilch M., Erdman C.A. Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop // Int. J. Multiphase Flow. 1987. V. 13. P. 741–757.
  19. Meignen R., Picchi S., Lamome J. et al. The challenge of modeling fuel-coolant interaction: Pt. I – Premixing // Nucl. Engng.&Design. 2014. V. 280. P. 511–527.
  20. Fletcher D.F., Anderson R.P. A review of pressure-induced propagation models of the vapour explosion process // Prog. Nucl. Energy. 1990. V. 23. P. 137–179.
  21. Fletcher D.F. An improved mathematical model of melt/water detonations – I. Model formulation and example results // Int. J. Heat Mass Transfer. 1991. V. 34. № 10. P. 2435–2448.
  22. Безносов А.В., Пинаев С.С., Давыдов Д.В. и др. Экспериментальные исследования характеристик контактного теплообмена свинцовый теплоноситель–рабочее тело // Атомная энергия. 2005. Т. 98 (3). С. 182–187.
  23. Carachalios C., Burger M., Unger H. A transient two-phase model to describe thermal detonations based on hydrodynamic fragmentation // in: Proc. Int. Meeting on LWR Severe Accident Evaluation, Cambridge, Massachusetts, 28 Aug.–1 Sep. 1983.
  24. Ishii M., Hibiki T. Thermo-Fluid Dynamics of Two-Phase Flow. New York: Springer, 2011. 518 p.
  25. Kolev N.I. Multiphase Flow Dynamics. V. 1. Fundamentals. New York: Springer, 2015. 840 p.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (16KB)
3.

Скачать (19KB)
4.

Скачать (26KB)
5.

Скачать (36KB)

© В.И. Мелихов, О.И. Мелихов, Салех Башар, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».