Асимптотики дальних полей внутренних гравитационных волн от импульсного локализованного источника во вращающейся стратифицированной среде

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Решена задача о построении асимптотик дальних полей внутренних гравитационных волн, возникающих от импульсного локализованного источника возмущений в стратифицированной вращающейся как целое жидкости конечной глубины. В приближении постоянства частоты плавучести построены равномерные и неравномерные асимптотики решений для описания дальних волновых полей, которые выражаются через функцию Эйри и ее производную. Проведено сравнение точных и асимптотических результатов, и показано, что на временах, больших нескольких периодов плавучести, и на расстояниях порядка толщины слоя жидкости, полученные асимптотики позволяют описать амплитудно-фазовую структуру дальних волновых полей.

Об авторах

В. В. Булатов

Институт проблем механики им. А.Ю. Ишлинского РАН

Автор, ответственный за переписку.
Email: internalwave@mail.ru
Россия, Москва

И. Ю. Владимиров

Институт океанологии им. П.П. Ширшова РАН

Автор, ответственный за переписку.
Email: iyuvladimirov@rambler.ru
Россия, Москва

Список литературы

  1. Miropol'skii Yu.Z., Shishkina O.V. Dynamics of Internal Gravity Waves in the Ocean. Boston: Kluwer Acad. Pub., 2001. 406 p.
  2. Pedlosky J. Waves in the Ocean and Atmosphere: Introduction to Wave Dynamics. Berlin; Heildelberg: Springer, 2010. 260 p.
  3. Sutherland B.R. Internal Gravity Waves. Cambridge: Univ. Press, 2010. 394 p.
  4. Ozsoy E. Geophysical Fluid Dynamics II. Stratified Rotating Fluid Dynamics of the Atmosphere–Ocean. Springer Textbook in Earth Sciences. Geography and Environment. AG Cham: Springer Nature, 2021. 323 p.
  5. Morozov E.G. Oceanic Internal Tides. Observations, Analysis and Modeling. Berlin: Springer, 2018. 317 p.
  6. Velarde M.G., Tarakanov R.Yu., Marchenko A.V. (Eds.). The Ocean in Motion. Springer Oceanography. Springer Int. Pub. AG, 2018. 625 p.
  7. Voelker G.S., Myers P.G., Walter M., Sutherland B.R. Generation of oceanic internal gravity waves by a cyclonic surface stress disturbance // Dyn. Atm. Oceans. 2019. V. 86. P. 116–133.
  8. Сидняев Н.И. Теоретические исследования гидродинамики при подводном взрыве точечного источника // Инж. ж.: наука и инновации. 2013. № 2. https://engjournal.ru/catalog/appmath/hidden/614.html https://doi.org/10.18698/2308-6033-2013-2-614
  9. Беляев М.Ю., Десинов Л.В., Крикалев С.К., Кумакшев С.А., Секерж-Зенькович С.Я. Идентификация системы океанских волн по фотоснимкам из космоса // Изв. РАН. ТиСУ. 2009. № 1. С. 117–127.
  10. Матюшин П.В. Процесс формирования внутренних волн, инициированных начальным движением тела в стратифицированной вязкой жидкости // Изв. РАН. МЖГ. 2019. № 3. С. 83–97.
  11. Chai J., Wang Z., Yang Z., Wang Z. Investigation of internal wave wakes generated by a submerged body in a stratified flow // Ocean Engng. 2022. V. 266. P. 112840.
  12. Ulloa H.N., Fuente A., Nino Y. An experimental study of the free evolution of rotating, nonlinear internal gravity waves in a two-layer stratified fluid // J. Fluid Mech. 2014. V. 742. P. 308–339.
  13. Li T., Wan M., Wang J., Chen S. Flow structures and kinetic-potential exchange in forced rotating stratified turbulence // Phys. Rev. Fluids. 2020. V. 5. P. 014802.
  14. Свиркунов П.Н., Калашник М.В. Фазовые картины диспергирующих волн от движущихся локализованных источников // УФН. 2014. Т. 184. № 1. С. 89–100.
  15. Gnevyshev V., Badulin S. Wave patterns of gravity–capillary waves from moving localized sources // Fluids. 2020. V. 5. P. 219.
  16. Булатов В.В., Владимиров Ю.В. Волны в стратифицированных средах. М.: Наука, 2015. 735 c.
  17. Бреховских Л.М., Годин О.А. Акустика неоднородных сред. в 2 тт. Т. 1: Основы теории отражения и распространения звука. М.: Наука, 2007. 443 с. Т. 2: Звуковые поля в слоистых и трехмерно-неоднородных средах. М.: Наука, 2009. 426 c.
  18. Kravtsov Y., Orlov Y. Caustics, Catastrophes, and Wave Fields. Berlin: Springer, 1999. 228 p.
  19. Froman N., Froman P. Physical Problems Solved by the Phase-Integral Method. Cambridge: Univ. Press, 2002. 214 p.
  20. Babich V.M., Buldyrev V.S. Asymptotic Methods in Short-Wavelenght Diffraction Theory. Oxford: Alpha Sci., 2007. 480 p.
  21. Булатов В.В., Владимиров Ю.В. Дальние поля внутренних гравитационных волн от источника возмущений в стратифицированной вращающейся среде // Изв. РАН. МЖГ. 2016. № 5. С. 57–63.
  22. Булатов В.В., Владимиров И.Ю. Равномерные асимптотики полей внутренних гравитационных волн от начального радиально симметричного возмущения // ПММ. 2022. Т. 86. № 2. С. 206–215.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (65KB)
3.

Скачать (52KB)

© В.В. Булатов, И.Ю. Владимиров, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».