О контактной задаче с деформируемым штампом в четверти плоскости

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

В работе впервые строго исследуется двумерная динамическая контактная задача о действии деформируемого штампа на четверть плоскости многослойной среды. В отличие от случая абсолютно твердого штампа, деформируемый штамп вносит дополнительные особенности, состоящие в возможности возникновения дискретных резонансов, предсказанных академиком И.И. Воровичем. Показано, что использование метода, основанного на применении блочных элементов, позволяет получать уравнение, описывающее резонансные частоты. Для исследования контактных задач с деформируемым штампом из материалов сложной реологии, в том числе, смарт-материалов. Вначале рассмотрен случай деформируемого штампа из материала простой реологии, которая описывается уравнениями Гельмгольца. Решения граничных задач для штампов сложной реологии, представляются комбинацией решений граничных задач для штампов простой реологии.

Об авторах

В. А. Бабешко

Южный научный центр Российской академии наук; Кубанский государственный университет

Автор, ответственный за переписку.
Email: babeshko41@mail.ru
Россия, Ростов-на-Дону; Россия, Краснодар

О. В. Евдокимова

Южный научный центр Российской академии наук

Автор, ответственный за переписку.
Email: evdokimova.olga@mail.ru
Россия, Ростов-на-Дону

О. М. Бабешко

Кубанский государственный университет

Автор, ответственный за переписку.
Email: babeshko49@mail.ru
Россия, Краснодар

М. В. Зарецкая

Кубанский государственный университет

Автор, ответственный за переписку.
Email: zarmv@mail.ru
Россия, Краснодар

В. С. Евдокимов

Кубанский государственный университет

Автор, ответственный за переписку.
Email: evdok_vova@mail.ru
Россия, Краснодар

Список литературы

  1. Ворович И.И. Спектральные свойства краевой задачи теории упругости для неоднородной полосы // Докл. АН СССР. 1979. Т. 245. № 4. С. 817–820.
  2. Ворович И.И. Резонансные свойства упругой неоднородной полосы // Докл. АН СССР. 1979. Т. 245. № 5. С. 1076–1079.
  3. Ворович И.И., Бабешко В.А., Пряхина О.Д. Динамика массивных тел и резонансные явления в деформируемых средах. М.: Наука, 1999. 246 с.
  4. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Фрактальные свойства блочных элементов и новый универсальный метод моделирования // Докл. РАН. 2021. Т. 499. С. 21–26. https://doi.org/10.31857/S2686740021040039
  5. Бабешко В.А., Евдокимова О.В., Бабешко О.М. О контактных задачах с деформируемым штампом // Пробл. прочн. и пластич. 2022. Т. 84. № 1. С. 25–34. https://doi.org/10.32326/1814-9146-2022-84-1-25-34
  6. Горячева И.Г., Добычин М.Н. Контактные задачи трибологии. М.: Машиностроение, 1988. 256 с.
  7. Papangelo A., Ciavarella M., Barber J.R. Fracture Mechanics implications for apparent static friction coefficient in contact problems involving slip-weakening laws // Proc. Roy. Soc. 2015. A 471. Iss. 2180: Art. No. 20150271.
  8. Ciavarella M. The generalized Cattaneo partial slip plane contact problem. I-Theory, II-Examples // Int. J. Solids Struct. 1998. V. 35. P. 2349–2378.
  9. Zhou S., Gao X.L. Solutions of half-space and half-plane contact problems based on surface elasticity // Zeitschrift fr angewandte Mathematik und Physik. 2013. V. 64. P. 145–166.
  10. Guler M.A., Erdogan F. The frictional sliding contact problems of rigid parabolic and cylindrical stamps on graded coatings // Int. J. Mech. Sci. 2007. V. 49. P. 161–182.
  11. Ke L.-L., Wang Y.-S. Two-dimensional sliding frictional contact of functionally graded materials // Eur. J. Mech. A/Solids. 2007. V. 26. P. 171–188.
  12. Almqvist A., Sahlin F., Larsson R., Glavatskih S. On the dry elasto-plastic contact of nominally flat surfaces // Tribol. Int. 2007. V. 40 (4). P. 574–579. https://doi.org/10.31857/S0032823522050046
  13. Almqvist A. An lcp solution of the linear elastic contact mechanics problem // http://www.mathworks.com/matlabcentral/fileexchange/43216.
  14. Andersson L.E. Existence results for quasistatic contact problems with Coulomb friction // Appl. Math. Optim. 2000. V. 42. P. 169–202.
  15. Cocou M. A class of dynamic contact problems with Coulomb friction in viscoelasticity // Nonlin. Anal.: Real World Appl. 2015. V. 22. P. 508–519.
  16. Бабешко В.А., Евдокимова О.В., Бабешко О.М. Точное решение универсальным методом моделирования контактной задачи в четверти плоскости многослойной среды // ПММ. 2022. Т. 86. Вып. 5. С. 628–637.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2.

Скачать (60KB)

© В.А. Бабешко, О.В. Евдокимова, О.М. Бабешко, М.В. Зарецкая, В.С. Евдокимов, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».