Bending Vibrations of an Elastic Rod Controlled by Piezoelectric Forces

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Bending vibrations of a thin elastic rod of rectangular cross-section are studied. A number of piezoelectric actuators (elements) is symmetrically attached without gaps to two opposite sides of the rod. Each element is glued to the neighboring ones, forming with the rod a single elastic body in the form of a rectangular parallelepiped. The body is hinged at both ends relative to the cross-sectional axis parallel to the piezoelectric layers. In opposite piezoelements, homogeneous fields of normal stresses are set antisymmetrically as functions of time. These stresses are parallel to the axis of the rod and force the elastic system to perform bending motions. Within the framework of the linear theory of elasticity for the considered system, generalized formulations of the initial-boundary value problem and the corresponding eigenvalue problem are given. These problems are defined through unknown displacements and the time integrals of mechanical stresses. An approximation of the displacement and stress fields, which is polynomial in transverse coordinates, is proposed. This approximation exactly satisfies the homogeneous boundary conditions for stresses on the lateral sides and takes into account the symmetry properties of the bending motions. For the chosen approximation, the boundary value problem for eigenvalues is exactly solved. Two branches of eigenvalues are found and used to reduce the initial-boundary value problem to a countable system of first-order ordinary differential equations with respect to complex variables. The dynamical system is decomposed into independent infinite-dimensional subsystems with a scalar control input. One of these subsystems is not controllable. For the remaining subsystems, each corresponding to a pair of piezoelectric elements, a control law for vibration damping is proposed for a specific number of the lower modes associated with the lower branch.

Sobre autores

A. Gavrikov

Ishlinsky Institute for Problems in Mechanics RAS

Autor responsável pela correspondência
Email: gavrikov@ipmnet.ru
Russia, Moscow

G. Kostin

Ishlinsky Institute for Problems in Mechanics RAS

Autor responsável pela correspondência
Email: kostin@ipmnet.ru
Russia, Moscow

Bibliografia

  1. Donnell L.H. Beams, Plates and Shells. N.Y.: McGraw-Hill, 1976.
  2. Strutt J.W. (Baron Rayleigh) Theory of Sound. Vol. 1. L.: MacMillan, 1926.
  3. Timoshenko S. Strength of Materials. Pt 1. Elementary Theory and Problems. Princenton: D. Van Nostrand Reinhold, 1956.
  4. Reissner E. The effect of transverse shear deformation on the bending of elastic plates // J. Appl. Mech., 1945, vol. 12, pp. A69–A77.
  5. Levinson M. On Bickford’s consistent higher order beam theory // Mech. Res. Commun., 1985, vol. 12, pp. 1–9.
  6. Kostin G.V., Saurin V.V. Integro-differential approach to solving problems of linear elasticity theory // Dokl. Phys., 2005, vol. 50, no. 10, pp. 535–538.
  7. Kostin G.V., Saurin V.V. Modelling and analysis of the natural vibrations of a prismatic elastic beam based on a projection approach // JAMM, 2011, vol. 75, no. 6, pp. 700–710.
  8. Kostin G.V., Saurin V.V. Dynamics of Solid Structures. Methods Using Integrodifferential Relations. Berlin: De Gruyter, 2018.
  9. Kostin G. Projection approach to spectral analysis of thin axially symmetric elastic solids. // Recent Trends in Wave Mechanics and Vibrations. WMVC 2022. Mechanisms and Machine Science, vol. 125 / Ed. by Dimitrovová Z. et al. Springer, 2023. pp. 285–295.
  10. Akulenko L.D., Nesterov S.V. High-Precision Methods in Eigenvalue Problems and Their Applications. Boca Raton: Charman and Hall/CRC, 2005.
  11. Gavrikov A.A., Kostin G.V. Optimization of longitudinal motions of an elastic rod with the help of periodically distributed piezoelectric forces // J. Comput.&Syst. Sci. Int., 2023, vol. 62, no. 5, pp. 788–804. (in Press)
  12. Bruant I., Coffignal G., Lene F., Verge M. A methodology for determination of piezoelectric actuator and sensor location on beam structures // J. Sound&Vibr., 2001, vol. 243, no. 5, pp. 861–882.
  13. Gupta V., Sharma M., Thakur N. Optimization criteria for optimal placement of piezoelectric sensors and actuators on a smart structure: A technical review // J. Intell. Mater. Syst.&Struct., 2010, vol. 21, no. 12, pp. 1227–1243.
  14. Kostin G., Gavrikov A. Controllability and optimal control design for an elastic rod actuated by piezoelements // IFAC-PapersOnLine, 2022, vol. 55, no. 16, pp. 350–355.
  15. Gavrikov A., Kostin G. Optimal LQR control for longitudinal vibrations of an elastic rod actuated by distributed and boundary inputs // Recent Trends in Wave Mechanics and Vibrations. WMVC 2022. Mechanisms and Machine Science, vol. 125 / Ed. by Dimitrovová Z. et al. Springer, 2023. pp. 285–295.
  16. Kucuk I., Sadek I., Yilmaz Y. Optimal control of a distributed parameter system with applications to beam vibrations using piezoelectric actuators // J. Franklin Inst., 2014, vol. 351, pp. 656–666.
  17. Mead D.J., Markus S. The forced vibration of a three-layer, damped sandwich beam with arbitrary boundary conditions // J. Sound&Vibr., 1969, vol. 10, no. 2, pp. 163–175.
  18. Sayyad A.S., Ghugal Y.M. Bending, buckling and free vibration of laminated composite and sandwich beams: A critical review of literature // Compos. Struct., 2017, vol. 171, pp. 486–504.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (13KB)
3.

Baixar (15KB)
4.

Baixar (122KB)
5.

Baixar (104KB)
6.

Baixar (130KB)
7.

Baixar (71KB)

Declaração de direitos autorais © А.А. Гавриков, Г.В. Костин, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies