Simulation of Rising Bubble Dynamics

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

A direct numerical simulation of the rising of an initially quiescent air bubble in water without flow has been carried out. For comparison with the experiment, a complicated initial shape of the bubble, corresponding to the experimental one, was taken. The changes in the shape of the bubble during rising, obtained as the result of numerical simulation, are close to the experimental deformations of the bubble. For comparison with the results of numerical simulations available in the literature, we simulated rising bubble, which initially had a spherical shape. It was found that during rising, the shape of the bubble is first close to elliptical and oscillates, but then it becomes more complicated – a “tail” appears in the lower part of the bubble. This regime of the rising bubble dynamics is confirmed by the results of numerical simulation published in the literature.

Sobre autores

A. Zotova

Institute of Applied Physics RAS

Autor responsável pela correspondência
Email: aniazotova@yandex.ru
Russia, Nizhny Novgorod

A. Kandaurov

Institute of Applied Physics RAS

Email: aniazotova@yandex.ru
Russia, Nizhny Novgorod

Yu. Troitskaya

Institute of Applied Physics RAS

Email: aniazotova@yandex.ru
Russia, Nizhny Novgorod

D. Sergeev

Institute of Applied Physics RAS

Email: aniazotova@yandex.ru
Russia, Nizhny Novgorod

Bibliografia

  1. Haberman W.L., Morton R.K. An Experimental Investigation of the Drag and Shape of Air Bubbles Rising in Various Liquids. Washington (DC): David Taylor Model Basin, 1953.
  2. Tagawa Y., Takagi S., Matsumoto Y. Surfactant effect on path instability of a rising bubble // J. Fluid Mech., 2014, vol. 738, pp. 124–142.
  3. Bunner B., Tryggvason G. Direct numerical simulations of three-dimensional bubbly flows // Phys. Fluids, 1999, vol. 11, pp. 1967–1969.
  4. Lu J., Tryggvason G. Effect of bubble deformability in turbulent bubbly upflow in a vertical channel // Phys. Fluids, 2008, vol. 20, pp. 040701.
  5. Sussman M., Puckett E.G. A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows // J. Comput. Phys., 2000, vol. 162, pp. 301–337.
  6. Shin S., Juric D. Modeling three-dimensional multiphase flow using a level contour reconstruction method for front tracking without connectivity // J. Comput. Phys., 2002, vol. 180, pp. 427–470.
  7. Hua J., Stene J.F., Lin P. Numerical simulation of 3D bubbles rising in viscous liquids using a front tracking method // J. Comput. Phys., 2008, vol. 227, pp. 3358–3382.
  8. Pivello M., Villar M. Serfaty R. et al. A fully adaptive front tracking method for the simulation of two phase flows // Int. J. Multiphase Flow, 2014, vol. 58, pp. 72–82.
  9. Tripathi M.K., Sahu K.C., Govindarajan R. Dynamics of an initially spherical bubble rising in quiescent liquid // Nature Commun., 2015, vol. 6, no. 1, pp. 1–9.
  10. Bonometti T., Magnaudet J., Gardin P. On the dispersion of solid particles in a liquid agitated by a bubble swarm // Metall Mater Trans. B, 2007, vol. 38, pp. 739–750.
  11. Roghair I., Van Sint Annaland M., Kuipers H.J.A.M. Drag force and clustering in bubble swarms // AIChE J., 2013, vol. 59, iss. 5, pp. 1791–1800.
  12. Roghair I., Sint Annaland M., Kuipers H.J. Drag force and clustering in bubble swarms // AIChE J., 2013, vol. 59, pp. 1791–1800.
  13. Magnaudet J., Mougin G. Wake instability of a fixed spheroidal bubble // J. Fluid Mech., 2007, vol. 572, pp. 311–337.
  14. Shew W.L., Pinton J. Dynamical model of bubble path instability // Phys. Rev. Lett., 2006, vol. 97, pp. 144508.
  15. Wichterle K., Vecer M., Ruzicka M.C. Asymmetric deformation of bubble shape: cause or effect of vortex-shedding? // Chem. Papers, 2014, vol. 68, pp. 74–79.
  16. Popinet S. The Basilisk code: http://basilisk.fr
  17. Popinet S. An accurate adaptive solver for surface-tension-driven interfacial flows // J. Comput. Phys., 2009, vol. 228 (16), pp. 5838–5866.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (676KB)
3.

Baixar (20KB)
4.

Baixar (124KB)
5.

Baixar (1MB)
6.

Baixar (356KB)
7.

Baixar (719KB)

Declaração de direitos autorais © А.Н. Зотова, А.А. Кандауров, Ю.И. Троицкая, Д.А. Сергеев, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies