On a partially invariant solution of gas dynamics equations
- Authors: Chupakhin A.P.1,2, Stetsyak E.S.1,2
-
Affiliations:
- Lavrentyev Institute of Hydrodynamics SB RAS
- Novosibirsk State University
- Issue: Vol 89, No 5 (2025)
- Pages: 811-824
- Section: Articles
- URL: https://journals.rcsi.science/0032-8235/article/view/351668
- DOI: https://doi.org/10.7868/S3034575825050082
- ID: 351668
Cite item
Abstract
About the authors
A. P. Chupakhin
Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University
Email: chupakhin@hydro.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia
E. S. Stetsyak
Lavrentyev Institute of Hydrodynamics SB RAS; Novosibirsk State University
Email: stetsyak.e.s@hydro.nsc.ru
Novosibirsk, Russia; Novosibirsk, Russia
References
- Ovsiannikov L.V. Group Analysis of Differential Equations. Academic Press, 1982. 416 p. https://doi.org/10.1016/C2013-0-07470-1
- Ovsiannikov L.V. The “podmodeli” program. Gas Dynamics // J. of Appl. Mech.&Tech. Physics, 1994, vol. 58, no. 4, pp. 601–627. https://doi.org/10.1016/0021-8928(94)90137-6
- Olver P. Applications of Lie Groups to Differential Equations. N.-Y.: Springer, 1993. 513 p. https://doi.org/10.1007/978-1-4612-4350-2
- Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1993, vol. 1. https://doi.org/10.1201/9781003419808
- Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1994, vol. 2.
- Ibragimov N.K. CRC Handbook of Lie Group Analysis of Differential Equations. Boca Raton: CRC Press, 1995, vol. 3. https://doi.org/10.1201/9781003575221
- Polyanin A.D., Zaitsev V. F. Handbook of Exact Solutions for Ordinary Differential Equations. Boca Raton: Chapman Hall/CRC, 2003.
- Kobayashi S., Nomizu K. Foundations of Differential Geometry, vol. 1. N.-Y.: Wiley, 1963. 329 p.
- Kobayashi S., Nomizu K. Foundations of Differential Geometry, vol. 2. N.-Y.: Wiley, 1969. 470 p.
- Ovsiannikov L.V., Chupakhin, A.P. Regular partially invariant submodels of gas dynamics equations// J. of Appl. Mech.&Tech. Physics. 1995, vol. 2, no. 6. https://doi.org/10.2991/jnmp.1995.2.3-4.3
- Ovsiannikov L.V. Some results of the programme SUBMODELS realized for gas dynamics equations/ J. of Appl. Mech.&Tech. Physics, 1999, vol. 63, no. 3, pp. 362–373.
- Shilnikov A.P., Shilnikov A.L., Turaev D.V. et al. Methods of Qualitative Theory in Nonlinear Dynamics. Berkeley: Univ. of California, 1998. 416 p.
- Arnold V.I. Geometrical Methods in the Theory of Ordinary Differential Equations. N.-Y.: Springer, 2012. 351 p. https://doi.org/10.1007/978-1-4612-1037-5
- Davydov A.A. Normal Form of a differential equation, not solvable for the derivative, in a neighborhood of a singular point// Func. Analysis&Its Applics., 1985, vol. 19, pp. 81–89. https://doi.org/10.1007/BF01078387
- Barlukova A.M., Chupakhin A.P. Partially Invariant Solutions in Gas Dynamics and Implicit Equations // J. of Appl. Mech.&Tech. Physics., 2012, vol. 53, pp. 812–824. https://doi.org/10.1134/S0021894412060028
- Fomenko A.T., Vedyushkina V.V. Billiards and Integrability in Geometry and Physics. New Scope and New Potential// Moscow Univ. Math. Bulletin, 2019, vol. 74, pp. 98–107. https://doi.org/10.3103/S0027132219030021
- Cherevko A.A., Chupakhin A.P. On Self-Similar Ovsiannikov’s Vortex // Proc. of the Steklov Inst. of Math., 2012, vol. 278, pp. 276–287. https://doi.org/10.1134/S0081543812060260
- Buckmaster T., Vicol V.C. Convex Integration and Phenomenologies in Turbulence // EMS Surveys in Math. Sci., 2020, vol. 6, no. 1, pp. 173–263. https://doi.org/10.48550/arXiv.1901.09023
- Kuznetsov E.A., Kagan M.Yu. Semiclassical Expansion of Quantum Gases in Vacuum // Theoret.&Math. Physics, 2020, vol. 202, no. 3, pp. 399–411. https://doi.org/10.1134/S0040577920030125
- Cherevko A.A., Chupakhin A.P. Stationary Ovsiannikov Vortex (Stacionarnyj vihr' Ovsyannikova)// Preprint, Novosib.: RAS. Siberian Branch. Institute of Hydrodynamics № 1, 2005.
- Chupakhin A.P., Yanchenko A.A. Ovsiannikov Vortex in Relativistic Hydrodynamics // J. of Appl. Mech.&Tech. Physics, 2019, vol. 60, pp. 187–199. https://doi.org/10.1134/S0021894419020019
- Loytsyansky L.G. Mechanics of liquid and gas. Oxford-N.-Y.: Pergamon Press, 1966. 804 p.
- Ovsiannikov L.V. Lectures on the Fundamentals of Gas Dynamics. Moscow-Izhevsk: Institute of Computer Studies, 2003. 336 p. (In Russian)
- Bogoyavlensky O.I. Methods of Qualitative Theory of Dynamical Systems in Astrophysics and Gas Dynamics. Heidelberg: Springer Berlin, 1985. 301 p.
- Lax P.D. Hyperbolic Partial Differential Equations. N.-Y.: American Mathematical Soc., 2006. 217 p.
Supplementary files


