Small Excilamp with a Wave Length of 172 nm
- 作者: Tarasenko V.F.1, Skakun V.S.1, Panarin V.A.1, Sorokin D.A.1
-
隶属关系:
- Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
- 期: 编号 6 (2023)
- 页面: 98-102
- 栏目: ОБЩАЯ ЭКСПЕРИМЕНТАЛЬНАЯ ТЕХНИКА
- URL: https://journals.rcsi.science/0032-8162/article/view/233266
- DOI: https://doi.org/10.31857/S0032816223050245
- EDN: https://elibrary.ru/ZWJJLJ
- ID: 233266
如何引用文章
详细
The design and parameters of a compact excilamp with an original sealed-off emitter made of a quartz tube with an outer diameter of 21 mm are described. The characteristics of xenon radiation in the vacuum ultraviolet region of the spectrum have been studied. On the band of the second xenon continuum, which has a maximum at the wavelength λ ≈ 172 nm, at a pulse repetition rate of 96 kHz, a radiation power density of 30 mW/cm2 was obtained. The excilamp was used for excitation of polymethyl methacrylate, in which a photoluminescence band was recorded in the spectral region of 380–480 nm.
作者简介
V. Tarasenko
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia
V. Skakun
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia
V. Panarin
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia
D. Sorokin
Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences
编辑信件的主要联系方式.
Email: VFT@loi.hcei.tsc.ru
634055, Tomsk, Russia
参考
- Gellert B., Kogelschatz U. // Appl. Phys. B. 1991. V. 52. P. 14. https://doi.org/10.1007/BF00405680
- Sosnin E.A., Tarasenko V.F., Lomaev M.I. UV and VUV excilamps. Deutschland/Germany, Saarbrucken: LAP LAMBERT Academic Publishing, 2012. ISBN 978-3-695-21756-2.
- Oppenlander T. Handbook of organic photochemistry and photobiology. Boca Ralton, L., NY: CRC Press, 2012. V. 1. P. 21.
- Ломаев М.И., Соснин Э.А., Тарасенко В.Ф., Шитц Д.В., Скакун В.С., Ерофеев М.В., Лисенко А.А. // ПТЭ. 2006. № 5. С. 5.
- Mildren R.P., Carman R.J. // Journal of Physics D: Applied Physics. 2001. V. 34. № 1. P. L1. www.iop.org/Journals/jd PII: S0022-3727(01)14862-X
- Arnold E., Lomaev M.I., Shitz D.V., Skakun V.S., Tarasenko V.F. // In Proceeding International Conference on Atomic and Molecular Pulsed Lasers IV. Russia, Tomsk: SPIE, 2002. V. 4747. P. 345.
- Ломаев М.И., Скакун В.С., Тарасенко В.Ф., Шитц Д.В. // Письма в ЖТФ. 2006. Т. 32. В. 11. С. 68.
- Al-Gharabli S., Engeßer P., Gera D., Klein S., Oppenländer T. // Chemosphere. 2016. V. 144. P. 811. https://doi.org/10.1016/j.chemosphere.2015.09.012
- Tsuji M., Kawahara T., Uto K., Kamo N., Miyano M., Hayashi J.I., Tsuji T. // Environmental Science and Pollution Research. 2018. V. 25. № 19. P.18980. https://doi.org/10.1007/s11356-018-2103-2
- Соснин Э.А., Тарасенко В.Ф., Шитц Д.В., Скакун В.С., Панарин В.А. Патент RU 2546144 // Опубл. 10.04.2015. Бюллетень № 10.
- Lee B., Shin S.H., Yoo W.J., Jang K.W. // Optical Review. 2016. V. 23. № 5. P. 806. https://doi.org/10.1007/s10043-016-0240-8
- Christensen J.B., Almhagen E., Nyström H., Andersen C.E. // Physics in Medicine & Biology. 2018. V. 63. № 6. P. 065001. https://doi.org/10.1088/1361-6560/aaafad
- Тарасенко В.Ф., Бакшт Е.Х., Ерофеев М.В., Бураченко А.Г. // Оптика и спектроскопия. 2021. Т. 129. Вып. 5. С. 569. https://doi.org/10.21883/OS.2021.05.50883.310-20
- Araujo G.R., Pollmann T., Ulrich A. // The European Physical Journal C. 2019. V. 79. № 8. P. 1. https://doi.org/10.1140/epjc/s10052-019-7152-2
- Бураченко А.Г., Тарасенко В.Ф., Генин Д.Е., Пучикин А.В. // Успехи прикладной физики. 2022. Т. 10. № 1. С. 5. https://doi.org/10.51368/2307-4469-2022-10-1-5-13
