Применение стеклянных капилляров с внешним диаметром менее одного микрометра в манипуляторе, изготовленном на основе атомно-силового микроскопа

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Рассмотрены применения стеклянных капилляров с внешним диаметром на их остром конце менее 0.3 мкм в качестве зондов в манипуляторе, созданном на базе атомно-силового микроскопа (АСМ), работающего в динамическом полноконтактном режиме. Исследованы различные аспекты настройки системы обратной связи в данном режиме работы АСМ для корректного получения изображения топографии исследуемого образца. Приведены примеры использования капилляров в качестве зондов для перемещения нановискеров с характерным диаметром 100 нм и чешуек гексагонального нитрида бора (hBN) с характерными размерами от единиц до сотен микрометров. Показана возможность создания и перемещения капель жидкости объемом менее 100 аттолитров.

Полный текст

Доступ закрыт

Об авторах

А. А. Жуков

Институт физики твердого тела Российской академии наук

Автор, ответственный за переписку.
Email: azhukov@issp.ac.ru
Россия, 142432, Черноголовка, Московская обл., ул. Академика Осипьяна, 2

С. В. Чекмазов

Институт физики твердого тела Российской академии наук

Email: azhukov@issp.ac.ru
Россия, 142432, Черноголовка, Московская обл., ул. Академика Осипьяна, 2

И. С. Лакунов

Институт физики твердого тела Российской академии наук

Email: azhukov@issp.ac.ru
Россия, 142432, Черноголовка, Московская обл., ул. Академика Осипьяна, 2

А. А. Мазилкин

Институт физики твердого тела Российской академии наук

Email: azhukov@issp.ac.ru
Россия, 142432, Черноголовка, Московская обл., ул. Академика Осипьяна, 2

Н. А. Баринов

Московский физико-технический институт (Национальный исследовательский университет)

Email: azhukov@issp.ac.ru
Россия, 141701, Долгопрудный, Московская обл., Институтский пер., 9

Д. В. Клинов

Московский физико-технический институт (Национальный исследовательский университет)

Email: azhukov@issp.ac.ru
Россия, 141701, Долгопрудный, Московская обл., Институтский пер., 9

Список литературы

  1. Hansma P.K., Drake B., Marti O., Gould S.A.C., Prater C.B. // Science. 1989. V. 243. P. 641. https://doi.org/10.1126/science.2464851
  2. Bergner St., Vatsyayan P., Matysik F.-M. // Analytica Chimica Acta. 2013. V. 775. P. 1. https://doi.org/10.1016/j.aca.2012.12.042
  3. Polcari D., Dauphin-Ducharme Ph., Mauzeroll J. // Chem. Rev. 2016. V. 116. P. 13234. https://doi.org/10.1021/acs.chemrev.6b00067
  4. Zhu Ch., Huang K., Siepser N.P., Baker L.A. // Chem. Rev. 2021. V. 121. P. 11726. https://doi.org/10.1021/acs.chemrev.0c00962
  5. Waghulea T., Singhvi G., Dubey S.K., Pandey M.M., Gupta G., Singh M., Dua K. // Biomedicine & Pharmacotherapy. 2019. V. 109. Р. 1249. https://doi.org/10.1016/j.biopha.2018.10.078
  6. Kolmogorov V.S., Erofeev A.S., Woodcock E., Efremov Y.M., Iakovlev A.P., Savin N.A., Alova A.V., Lavrushkina S.V., Kireev I.I., Prelovskaya A.O., Sviderskaya E.V., Scaini D., Klyachko N.L., Timashev P.S., Takahashi Ya. et al. // Nanoscale. 2021. V. 13. P. 6558. https://doi.org/10.1039/d0nr08349f
  7. Hennig S., Ries J., Klotzsch E., Ewers H., Vogel V. // Nano Lett. 2015. V. 15. P. 1374. https://doi.org/10.1021/nl2025954
  8. Shi X., Qing W., Marhaba T., Zhang W. // Electrochimica Acta. 2020. V. 332. P. 135472. https://doi.org/10.1016/j.electacta.2019.135472
  9. Izquierdo J., Fernández-Pérez B.M., Eifert A., Souto R.M., Kranz C. // Electrochimica Acta. 2016. V. 201. P. 320. https://doi.org/10.1016/j.electacta. 12.160
  10. Frederix P.L.T.M., Bosshart P.D., Akiyama T., Chami M., Gullo M.R., Blackstock J.J., Dooleweerdt K., de Rooij N.F., Staufer U., Engel A. // Nanotechnology. 2008. V. 19. P. 384004. https://doi.org/10.1088/0957-4484/19/38/384004
  11. Macpherson J.V., Jones C.E., Barker A.L., Unwin P.R. // Anal. Chem. 2002. V. 74. P. 1841. https://doi.org/10.1021/ac0157472
  12. Kolagatla S., Subramanian P., Schechter A. // Nanoscale. 2018. V. 10. P. 6962. https://doi.org/10.1039/C8NR00849C
  13. Betzig E., Finn P.L., Weiner J.S. // Appl. Phys. 1992. Lett. V. 60. P. 2484. https://doi.org/10.1063/1.106940
  14. Жуков А.А., Романова С.Г. // ПТЭ. 2022. № 3. С. 141. https://doi.org/10.31857/S0032816222040085
  15. Zhukov A.A., Stolyarov V.S., Kononenko O.V. // Rev. Sci. Instrum. 2017. V. 88. P. 063701. https://doi.org/10.1063/1.4985006
  16. Voigtlaender B. Atomic Force Microscopy, Nature Switzerland AG: Springer, 2019.
  17. Жуков А.А. // ПТЭ. 2019. № 3. С. 120. https://doi.org/10.1134/S0032816219030303
  18. Frisenda R., Navarro-Moratalla E., Gant P., De Lara D.P., Jarillo-Herrero P., Gorbachev R.V., Castellanos-Gomez A. // Chemical Society Rev. 2018. V. 47. P. 53. https://doi.org/10.1039/C7CS00556C
  19. Castellanos-Gomez A., Buscema M., Molenaar R., Singh V., Janssen L., van der Zant H.S.J., Steele G.A. // 2D Mater. 2014. V. 1. P. 11002. https://doi.org/10.1088/2053-1583/1/1/011002
  20. Ribeiro-Palau R., Zhang Ch., Watanabe K., Taniguchi T., Hone J., Dean C.R. // Sience. 2018. V. 361. P. 690. https://doi.org/10.1126/science.aat6981
  21. Schneider G.F., Calado V.E., Zandbergen H., Vandersypen L.M.K., Dekker C. // Nano Lett. 2010. V. 10. P. 1912. https://doi.org/10.1021/nl102069z
  22. Yankowitz M., Xue J., Cormode D., Sanchez-Yamagishi J.D., Watanabe K., Taniguchi T., Jarillo-Herrero P., Jacquod P., LeRoy B.J. // Nat. Phys. 2012. V. 8. P. 382. https://doi.org/10.1038/nphys2272
  23. Woods C.R., Britnell L., Eckmann A., Ma R.S., Lu J.C., Guo H.M., Lin X., Yu G.L., Cao Y., Gorbachev R.V., Kretinin A.V., Park J., Ponomarenko L.A., Katsnelson M.I., Gornostyrev Y.N. // Nat. Phys. 2014. V. 10. P. 451. https://doi.org/10.1038/nphys2954
  24. Hunt B., Sanchez-Yamagishi J.D., Young A.F., Yankowitz M., LeRoy B.J., Watanabe K., Taniguchi T., Moon P., Koshino M., Jarillo-Herrero P., Ashoori R.C. // Science. 2013. V. 340. P. 1427. https://doi.org/10.1126/science.1237240
  25. Ponomarenko L.A., Gorbachev R.V., Yu G.L., Elias D.C., Jalil R., Patel A.A., Mishchenko A., Mayorov A.S., Woods C.R., Wallbank J.R., Mucha-Kruczynski M., Piot B.A., Potemski M., Grigorieva I.V., Novoselov K.S. et al. // Nature. 2013. V. 497. P. 594. https://doi.org/10.1038/nature12187
  26. Dean C.R., Wang L., Maher P., Forsythe C., Ghahari F., Gao Y., Katoch J., Ishigami M., Moon P., Koshino M., Taniguchi T., Watanabe K., Shepard K.L., Hone J., Kim P. // Nature. 2013. V. 497. P. 598. https://doi.org/10.1038/nature12186
  27. Piner R.D., Zhu J., Xu F., Hong S., Mirkin C.A. // Science. 1999. V. 283. P. 661. https://doi.org/10.1126/science.283.5402.661
  28. Ginger D.S., Zhang H., Mirkin Ch.A. // Angewandte Chemie International Edition. 2004. V. 43. P. 30. https://doi.org/10.1002/anie.200300608

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Резонансные кривые кварцевого осциллятора R(F) при различном значении его смещения (h) над поверхностью подложки. Частота резонанса свободно колеблющегося кварцевого резонатора с прикрепленным капилляром F = 22 840 Гц отмечена вертикальной черной линией. Оптимальная частота для корректной работы системы обратной связи АСМ F = 23 000 Гц отмечена вертикальной красной линией.

Скачать (200KB)
3. Рис. 2. а) Результат измерения рельефа стандартной калибровочной решетки (TGZ1, NT-MDT SI). б) Профиль измеренного рельефа вдоль направления быстрого сканирования. Масштабы на рис. а и б по горизонтальной оси совпадают.

Скачать (180KB)
4. Рис. 3. а) Общий вид подложки и капилляра. б) Исходное положение нановискеров InAs. в) Конечное положение нановискеров. Масштабы на рис. б и в совпадают. Изображения а– в получены при помощи оптического микроскопа. г) Итоговое положение нановискеров (Т-образная конфигурация), полученное при помощи сканирующего электронного микроскопа.

Скачать (286KB)
5. Рис. 4. Пример перемещения пластины hBN микронного размера при помощи стеклянного капилляра малого диаметра. Белый угол на рисунках отмечает исходное положение правого края пластины. Масштабы на рис. а и б совпадают.

Скачать (171KB)
6. Рис. 5. Этапы процесса перемещения пластины hBN большого (более 100 микрометров) размера: а–д – подведение зонда под лист, е–л – отделение листа от поверхности, м – лист hBN лежит на капилляре, т.е. приготовлен для перемещения на другое место данной подложки или к переносу на другую подложку. Масштабы на рис. а–и и на рис. к–м совпадают.

7. Рис. 6. а, б) Примеры поворота листа hBN большого размера вокруг точки вращения (черная окружность). в, г) Примеры параллельного перемещения листа hBN большого размера. Масштабы на рис. а и б, а также на рис. в и г совпадают.

Скачать (542KB)
8. Рис. 7. Пример создания точки вращения листа hBN. Масштабы на всех изображениях совпадают.

Скачать (651KB)
9. Рис. 8. Пример создания и перемещения капель жидкости (капли А и Б отмечены стрелками) по поверхности подложки. Масштабы изображений на обоих рисунках совпадают.

Скачать (191KB)

© Российская академия наук, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».