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Описаны результаты первых экспериментов по генерации ионов из ряда химических элементов 
от легких до тяжелых на лазерно-плазменном источнике ионов, который входит в состав разраба-
тываемого в НИЦ “Курчатовский институт” тяжелоионного инжектора синхротронов. Источник 
базируется на СО2-лазерной системе ФОКУС импульсно-периодического действия и включает 
в состав вакуумную мишенную камеру с дрейфовым пространством и высоковольтную систему 
экстракции и формирования пучка заряженных частиц. В работе описано устройство источника 
и приведены характеристики лазерного излучения и генерируемых ионных пучков Al, Fe и Bi, 
которые получены в результате совместной обработки данных времяпролетного спектра частиц 
из плазменного потока и токовых характеристик экстрагированного ионного пучка. Высокая 
эффективность этого источника для получения интенсивных ионных пучков из широкого спек-
тра элементов и возможность их оперативной смены могут быть успешно использованы в инжек-
торах синхротронов для комплексных исследований и тестирования электронной компонентной 
базы на радиационную стойкость.
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Импульсные лазерные генераторы позволяют 
сконцентрировать излучение в малый объем и 
тем самым получить рекордные яркости света, 
что в приложении к созданию плазмы позволяет 
реализовать высокую плотность потока излуче-
ния на поверхности мишени и нагрев плазмы до 
температур, обеспечивающих генерацию пучков 
заряженных частиц с рекордными ионизацион-
ным состоянием и интенсивностью. Характер-
ной особенностью такой схемы является возмож-
ность производить пучки малой длительности, 
например до единиц микросекунд, что требуется 
в ряде приложений. Другое техническое преиму-
щество лазерных источников, проистекающее из 
технологической схемы, связано с возможностью 
оперативной перестройки генерируемых пучков 
с одного сорта ионов на другой практически из 
всего ряда химических элементов. Такие каче-
ства лазерно-плазменных генераторов ионов 
делают их незаменимыми в составе инжекторов 
ускорителей при комплексных исследованиях по 

1. ВВЕДЕНИЕ

Применение импульсных лазеров в источни-
ках ионов существенно расширило традицион-
ные сферы использования пучков ускоренных 
частиц в народном хозяйстве, такие как фун-
даментальные исследования в области реляти
вистской ядерной физики и физики высокой 
плотности энергии в веществе, проблемы тера-
пии злокачественных опухолей, прикладные 
материаловедческие задачи и т. п. Среди послед-
них все большую актуальность приобретают 
задачи исследований и контроля элементной 
базы электроники в условиях радиационной 
нагрузки разного рода, в  частности, в  потоках 
заряженных частиц широкого спектра масс и 
энергий. Синхротронный комплекс, способный 
моделировать такие условия, становится все 
более востребованным в связи с интенсивным 
использованием электронного оборудования на 
космических аппаратах.
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воздействию ионных пучков на материалы и раз-
личные электронные элементы.

Использование СО2-лазера в качестве излу-
чателя придает лазерно-плазменному источнику 
ионов дополнительные преимущества из-за 
технической простоты СО2-лазера и невысоких 
требований к оптическим элементам: стоимость 
установки относительно невысока даже в слу-
чае лазера частотного действия с высокой (не 
менее 100 Дж) выходной энергией. Производ-
ственные помещения для размещения СО2-ла-
зера также отличаются относительно низкими 
требованиями к классу чистоты, вибростойко-
сти, термостабилизации и т. п. в соответствии с 
простой технологией лазера и большой длиной 
волны излучения, что снижает как капитальные 
затраты на строительство, так и эксплуатацион-
ные издержки.

2. ОПИСАНИЕ ЭКСПЕРИМЕНТАЛЬНОЙ 
УСТАНОВКИ И МЕТОДИКИ ИЗМЕРЕНИЯ

Используемый в описанных экспериментах 
лазерно-плазменный генератор ионов (ЛПГИ) 
состоит из трех основных частей (рис. 1): лазер-

ного драйвера ЛД; вакуумной мишенной камеры 
МК и высоковольтной системы экстракции СЭ.

В качестве лазерного драйвера создана 
система ФОКУС, представляющая собой глу-
бокую модернизацию разработанного ранее 
опытного образца импульсно-периодического 
СО2-лазера  [1], направленную, во-первых, на 
развитие принципиальной лазерно-оптиче-
ской схемы и тем самым на повышение пиковой 
мощности излучения устройства при неизмен-
ной энергетике накачки лазера; во-вторых, на 
устранение конструктивных недостатков опыт-
ного образца устройства, выявленных в процессе 
эксплуатации, с целью увеличения надежности и 
ресурса работы ЛПГИ.

Базовая физическая схема формирования 
импульса излучения в системе ФОКУС осно-
вана на нелинейных оптических эффектах при 
распространении излучения СО2-лазера в резо-
нансно-усиливающих и поглощающих средах. 
Эта схема впервые предложена в работе [2] и была 
развита с помощью численных расчетов и экс-
периментов с использованием идеи многосек-
ционной конструкции поглощающей ячейки [3] 
для модификации формы фронта импульса зада-

Рис. 1. Схема лазерно-плазменного генератора ионов: ЛД – лазерный драйвер – система ФОКУС, МК – мишен-
ная камера, СЭ – система экстракции, 1 – одномодовый одночастотный ЗГ, 2 – трехсекционная поглощающая 
ячейка ПЯ1, 3 – дифракционная решетка, 4 – короткофокусное зеркало ПФ, 5 – длиннофокусное зеркало ПФ, 
6 – пространственный фильтр, 7 – активная среда широкоапертурного многопроходового усилительного моду-
ля, 8 – односекционная поглощающая ячейка ПЯ2, 9 – выпуклое зеркало внеосевого конфокального телескопа, 
10 – фокусирующее зеркало телескопа, 11 – входное окно вакуумной мишенной камеры, 12 – фокусирующий 
объектив, 13 – плоское поворотное зеркало, 14 – цилиндрическая мишень, 15 – высоковольтная система экстрак-

ции, 16 – выходной ионный пучок.



23

ПРИБОРЫ И ТЕХНИКА ЭКСПЕРИМЕНТА        № 1        2025

ЛАЗЕРНО-ПЛАЗМЕННЫЙ ГЕНЕРАТОР ИОНОВ ШИРОКОГО РЯДА ЭЛЕМЕНТОВ

ющего генератора (ЗГ). В  схеме используется 
ячейка ПЯ1, состоящая из трех секций длиной 
по 30 см и наполняемая смесью SF6 + N2 по следу-
ющему закону: секция ПЯ1-1 – полное давление 
1000 мбар, давление SF6 0.4 мбар; ПЯ1-2 – 250 мбар, 
0.8 мбар; ПЯ1-3 – 62.5 мбар, 1.6 мбар. Такой спо-
соб позволяет особым образом модифицировать 
закон нарастания излучения после ЗГ [4], вслед-
ствие чего импульс эффективно сокращается по 
длительности в процессе усиления.

Схема лазерного драйвера (ЛД) ФОКУС как 
составной части ЛПГИ приведена на рис.  1. 
Импульс излучения одномодового одночастот-
ного ЗГ 1, который подробно описан в работе [5], 
работающий на линии Р(20) полосы генера-
ции 10 мкм, модифицируется в трехсекционной 
резонансно-поглощающей ячейке ПЯ1 2, затем 
с использованием плоской дифракционной 
решетки 3 он направляется на пространствен-
ный фильтр (ПФ), представляющий собой диа-
фрагму 6 с отверстием, которое располагается в 
фокусе конфокальной пары сферических зеркал 
4, 5 (база телескопической пары В = (R1 + R2) / 2, 
где R1, R2  – радиусы кривизны длиннофокус-
ного и короткофокусного зеркал) и формирует 
распределение пучка, отрезая пространственные 
гармоники высокого порядка так, что на выходе 
пучок становится близким к гауссовому. Другая 
функция телескопической пары  – увеличение 
диаметра пучка для оптимальных условий уси-
ления (в данной схеме установлено увеличение 
М = R1 / R2 = 3).

Далее дифракционно расходящийся лазерный 
пучок с помощью системы плоских зеркал делает 
первый проход усилительной среды 7, затем  – 
проход через поглощающую ячейку ПЯ2 8 дли-
ной 70 см, наполняемую смесью SF6 + N2 до дав-
ления 150 мбар с содержанием SF6 при давлении 
4 мбар. Вторая ячейка участвует в формировании 
фронта нарастания излучения, а также выпол-
няет роль развязки многопроходной схемы уси-
ления, препятствуя возникновению паразитной 
генерации на рабочей длине волны вдоль опти-
ческой оси. После второго прохода усилителя 
пучок попадает на выпуклое зеркало 9 внеосе-
вого (угол падения на малое зеркало не более 2°) 
кассегреновского телескопа (радиусы кривизны 
малого и большого зеркал соответственно 1632 и 
11 000 мм) и, геометрически расширяясь, делает 
третий проход усилителя и падает на фокусирую-
щее зеркало 10, после чего параллельный пучок 
диаметром 170 мм реализует финальный четвер-

тый проход, максимально заполняя активный 
объем.

Активная среда 7 усилительного модуля, 
подробно описанного в работе  [6], создается 
накачкой колебательно-вращательных уровней 
молекул СО2 в самостоятельном разряде газовой 
смеси СО2 / N2 / He = 1.5 / 1 / 7.5 при атмосфер-
ном давлении. Самостоятельный объемный раз-
ряд с предыонизацией рентгеновским пучком, 
конвертируемым из электронной пушки, фор-
мируется между профилированными электро-
дами в промежутке сечением 17 × 17 см2 и длиной 
125 см. Питание разряда осуществляется парал-
лельно двумя восьмиступенчатыми модулями 
генератора импульсного напряжения (ГИН) 
Аркадьева–Маркса с амплитудой импульса 
напряжения в холостом ходу до 400 кВ. Системы 
ГИН и прокачки рабочей смеси через разрядный 
объем обеспечивают работу лазера с частотой 
повторения до 1 Гц.

Полученный опыт эксплуатации опытного 
образца лазерной схемы показал некоторые кон-
структивные недостатки устройства, ограничи-
вающие непрерывный ресурс работы, которые 
учтены в действующей установке:

1) ячейка ПЯ2 вынесена из лазерного объема 
с целью устранения пробоя поверхностного слоя 
оптических окон лазерным излучением из-за 
загрязнения в потоке рабочей смеси газов и сни-
жения их лучевой стойкости;

2) рабочая часть поверхности разрядных элек-
тродов выполнена из перфорированного листа 
нержавеющей стали толщиной 1  мм с сотовой 
структурой отверстий для максимальной про-
зрачности электрода (в нижнем электроде для 
прохождения рентгеновского пучка предыониза-
тора, а в верхнем – для минимизации отражения 
лазерного излучения от поверхности электрода) 
взамен латунной сетки сравнимой прозрачно-
сти, что полностью исключило прогорание элек-
трода от случайных локальных дуговых образо-
ваний;

3) в конструкцию ГИН питания разряда уси-
лительного модуля внесены изменения по замене 
рабочих емкостей 0.1 мкФ с рабочим напряже-
нием до 50 кВ на аналогичные по номиналу эле-
менты на 100 кВ, что повышает расчетный ресурс 
работы ГИН до 106 выстрелов.

Выходной пучок лазерной системы диамет
ром D  = 170  мм направляется системой плос
ких зеркал через вакуумное оптическое окно 11 
в МК, где располагается фокусирующая схема, 
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состоящая из сферического зеркала 12 с отно-
сительным отверстием F / D ≈ 8.8 и вспомога-
тельного плоского зеркала 13. Система позво-
ляет сконцентрировать излучение лазерного 
пучка на поверхность мишени цилиндрической 
формы под углом около 5° к нормали поверхно-
сти, что минимизирует зеркальное отражение от 
мишени, возвращающееся в лазерную схему, и 
тем самым снижает обратную связь между мише-
нью и активной средой. Такая обратная связь 
может приводить к паразитной генерации уси-
лительной линейки и дополнительной лучевой 
нагрузке на оптические элементы лазера. Для 
получения наиболее стабильных воспроизводи-
мых условий генерации ионов цилиндрическая 
мишень поворачивается и смещается вдоль оси 
вращения на небольшой угол после акта облуче-
ния, так что каждый последующий импульс излу-
чения приходится на свежий участок мишени.

Используемые в оптической схеме отража-
тельные элементы выполнены из меди М0б, 
рабочие поверхности которых, напыленные 
золотом, обладают достаточно высокой лучевой 
прочностью. Прозрачные элементы из поли-
кристаллического селенида цинка просветлены 
на 10.6 мкм. Фокусирующие поверхности опти-
ческих элементов имеют сферическую форму. 
Наклонные падения луча в неосевом телескопе 
усилительной схемы и фокусирующем объек-

тиве мишенной камеры практически не приво-
дят к аберрациям из-за больших радиусов кри-
визны зеркал.

Мишенная камера более детально показана на 
рис. 2. Фокусировка лазерного пучка 1 на поверх-
ности мишени в вакуумной камере 2 приводит 
к образованию плазмы на поверхности мишени 
и ее последующему нагреву лазерным излуче-
нием до высоких температур и разлету в вакуум. 
Разлет происходит преимущественно по нормали 
к поверхности мишени, вдоль которой распола-
гается ось времяпролетной трубы 3, куда расши-
ряется плазменный поток материала мишени. 
На дрейфовом расстоянии, определяемом требо-
ваниями к длительности и плотности тока ионного 
пучка, устанавливается высоковольтная система 
экстракции 4 (СЭ, 15 на рис. 1), с помощью кото-
рой происходит разделение зарядов плазмы и 
формируется ионный пучок 5 (16 на рис. 1).

В описываемой установке для формирования 
ионного пучка использовалась трехэлектрод-
ная система, показанная на рис. 3. Плазменная 
струя 1, проходя дрейфовое расстояние 1935 мм 
от мишени, попадает на первый конфигуриро-
ванный экстракционный электрод 2 с осевым 
отверстием диаметром 15 мм, находящийся под 
положительным потенциалом, который регули-
руется в диапазоне 0–70 кВ. Под тем же потенци-
алом находится МК с вакуумным оборудованием 

Рис. 2. Общий вид мишенной камеры и системы 
экстракции: 1  – лазерный пучок, 2  – вакуумная 
мишенная камера, 3 – дрейфовая труба, 4 – высо-
ковольтная система экстракции, 5 – ионный пучок, 
6 – высоковольтные изоляторы. Волнистой лини-
ей показан ход лазерного луча, штриховой – плаз-
менная струя материала мишени, сплошной – ход  

ионного пучка.

Рис. 3. Трехэлектродная система высоковольтной 
экстракции: 1  – плазменный поток, 2  – первый 
электрод под положительным потенциалом, 3  – 
средний электрод под отрицательным потенциалом, 

4 – третий заземленный электрод.
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и драйвером мишени, которые установлены на 
высоковольтных изоляторах 6 (рис. 2). На рас-
стоянии 40 мм от первого размещается второй 
электрод 3 плоской формы с осевым отверстием 
диаметром 26 мм под отрицательным потенци-
алом, настраиваемым в диапазоне (0 ÷ –20) кВ. 
Третий плоский земляной электрод 4 с диамет
ром осевого отверстия 26 мм размещен с зазором 
7 мм от второго, он завершает схему формирова-
ния профиля ионного пучка.

Форма импульса на выходе лазерной системы 
записывается в каждом выстреле с помощью 
цифрового осциллографа Tektronix  DPO  5104 
с детектора типа photon-drag (PD-30), установ-
ленного в луче, отраженном от входного окна 
мишенной камеры и сфокусированном в апер-
туру 30 мм кристалла PD-30. Измеряемый сиг-
нал калибровался по мощности излучения путем 
предварительного измерения энергии импульса 
термопарным приемником Scientech 38-0802. 
Временное разрешение PD-30 по оценке из элек-
трических характеристик не хуже 1  нс, полоса 
регистрации осциллографа 1 ГГц с дискретно-
стью записи 100 пс.

На рис. 4 приведены результаты статистиче-
ской обработки данных лазерного импульса на 
выходе усилителя в процессе проведения изме-

Рис. 4. Данные статистической обработки характеристик лазерного импульса на выходе системы ФОКУС по тесту 
длительностью 2 ч с частотой повторения 1/16 Гц: а – пиковая мощность импульса, б – полная энергия, в – дли-

тельность на полувысоте.

рений энергетического спектра: средние зна-
чения пиковой мощности (а), полной энергии 
(б) и длительности на полувысоте (в) составили 
соответственно 6.25 ± 0.55 ГВт, 105.3 ± 6.3 Дж, 
13.9  ±  1.7  нс с аппроксимацией нормальным 

(б)

(а) (в)

sd = 0.55 ГВт sd = 1.7 нс
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распределением данных. Данные получены в 
процессе двухчасовой работы системы ФОКУС 
с частотой повторения импульсов 1/16 Гц. Такой 
режим задается условиями измерения спектра 
разлета ионов и определяется конечной скоро-
стью откачки мишенной камеры для восстанов-
ления необходимого уровня вакуума после акта 
облучения мишени, а  также скоростью сбора 
необходимого объема данных за выстрел при 
измерении энергетического спектра разлета 
ионов.

Типичная форма импульса в шкале мощности 
излучения приведена на рис.  5. Длительность 
импульса на полувысоте равна τ1/2 = 13.9 ± 1.7 нс 
с фронтом нарастания τФ ≈ 4 нс по уровню 0.1–
0.9. Последняя характеристика является важной 
для генерации многозарядных ионов, поскольку 
она определяет эффективность нагрева плазмы 
и достижение максимальной степени ионизации 
в условиях сравнимого по динамике процесса 
разлета ионов из горячей области. В описанных 
здесь экспериментах лазерный выход ограничи-
вался по пиковой мощности до 1.5 ГВт на входе 
в мишенную камеру путем диафрагмирования 
пучка проходным отверстием диаметром 90 мм.

Распределение плотности энергии 1 и энер-
госодержание в пучке 2 перед фокусирующим 
объективом мишенной камеры (F = 1500 мм) (а) 

и в фокальной плоскости (б), полученные путем 
дифракционного расчета распространения излу-
чения в аксиальном приближении по программе, 
описанной в работе [1], показаны на рис. 6. Здесь 
полная энергия Е0 = 19 Дж и максимальная плот-
ность энергии пучка e0

1  = 0.96 Дж/см2, а макси-
мальная плотность энергии в фокусе пятна e0

2  = 
= 4.4 ∙ 104 Дж/см2.

Сделаем оценку эффективной плотности 
потока qСР, при которой проведены описанные в 
работе эксперименты по генерации ионов: возь-
мем временной интервал и пространственную гра-
ницу пучка по уровню 0.1 плотности потока, тогда 
усредненная величина qСР ≈ 3.6 ∙ 1011 Вт/см2, что 
соответствует временному интервалу (−1,32) нс 
на осциллограмме импульса и диаметру пятна 
320 мкм на пространственной форме. Действу-
ющее ее значение, по-видимому, ниже из-за 
теплопроводности в периферийную область 
нагрева. Заметим, что часто используемая 
оценка плотности потока для характеристики 

Рис. 5. Типичная форма импульса на выходе систе-
мы ФОКУС.

Рис. 6. Пространственный профиль (1, левая шка-
ла) и энергосодержание (2, правая шкала) лазерного 
пучка перед мишенной камерой (а) и в фокальной 
плоскости (б), где E0  = 19 Дж  – полная энергия 
пучка, e0

1  = 0.96 Дж/см2 – максимальная плотность 
энергии пучка, e0

2  = 4.4 ∙ 104 Дж/см2 – максимальная 
плотность энергии в фокальном пятне.

(а)

(б)
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условий облучения мишени по максимальному 
значению в пике импульса и центральной части 
фокального пятна составляет q0 ≈ 3 ∙ 1012 Вт/см2, 
что существенно выше усредненного значения.

Для исследования энергетического спектра 
разлета ионов использовался времяпролетный 
электростатический цилиндрический дефлек-
тор с углом разворота 90°, подробно описанный 
в работе  [7], который устанавливался вместо 
системы экстракции. Дрейфовое расстояние 
от мишени до регистратора, в  качестве кото-
рого использовался вакуумный электронный 
умножитель (ВЭУ) Electronic Tubes Ltd 143EM, 
составляло 3620 мм. Первичные данные из сиг-
налов анализатора во всем диапазоне дискрет-
ных энергий настройки анализатора E (E = GzU0, 
где G  = 20  – геометрический фактор анализа-
тора, z – заряд иона, U0 – напряжение на пласти-
нах дефлектора) записывались в режиме реаль-
ного времени и обрабатывались с помощью 
компьютерного кода, включая идентификацию 
наблюдаемых ионных сигналов, их усреднение 
по 10 измерениям для каждой точки настройки, 
интерполяцию и получение требуемых характе-
ристик ионов отдельных зарядностей.

На рис. 7 показана типичная осциллограмма 
для ионов висмута, полученная при энергии 
настройки E [кэВ] = 4z, где ионы висмута наи-
более представлены по амплитуде. На следу-

ющем этапе восстановления характеристик 
ионных потоков в тех же условиях облучения 
проводились измерения полного тока ионов 
за системой экстракции, после чего усреднен-
ные значения использовались для нормировки 
парциальных токов в абсолютных единицах. 
В  результате вычислялись плотности частиц 
на заданном дрейфовом расстоянии и в задан-
ном временном интервале. На рис. 8 приведена 
типичная осциллограмма полного тока ионов 
висмута в серии 25 измерений, полученная при 
потенциалах на первом и втором экстракцион-
ных электродах +62 кВ и –5 кВ соответственно; 
разброс показан с учетом стандартных отклоне-
ний экспериментальных данных.

Данные на рис. 7, 8 иллюстрируют характер-
ные особенности генерации ионов в лазерной 
плазме: а) спектр ионов содержит, по крайней 
мере, две группы ионов, высокоэнергетиче-
скую и низкоэнергетическую  [8] (см. рис.  8а), 
которые отражают временной ход интенсивно-
сти лазера и пространственную форму пятна 
фокусировки, при максимальных плотностях 
потока, соответствующих пиковой интенсив-
ности импульса лазера и центральным обла-
стям фокального пятна, генерируется наиболее 
быстрая часть ионного пучка; б) по мере роста 
среднего заряда генерируемых ионов растет и их 
энергия (см. рис. 7), т. е. высокоэнергетическая 

Рис. 7. Сигналы анализатора ионов Bi при энергии настройки E [кэВ] = 4z, где амплитуды сигналов ВЭУ были 
максимальны. Нулевое значение временной шкалы – момент начала облучения мишени, длина дрейфа 3620 мм.
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“головка” ионного пучка образована преимуще-
ственно частицами с высокими степенями иони-
зации.

3. ХАРАКТЕРИСТИКИ ИОНОВ Al, Fe И Bi 
НА ВЫХОДЕ ЛАЗЕРНО-ПЛАЗМЕННОГО 

ГЕНЕРАТОРА

Далее приведены практически интересные 
характеристики ионов Al, Fe и Bi, полученные в 
описанных выше условиях облучения и экстрак-
ции при фиксированной плотности лазерного 
потока. Это обеспечивает наиболее простую 
конфигурацию источника, управление им при 
смене исследуемого элемента сводится только к 
подстройке энергии ионов на входе в линейный 
ускоритель RFQ, которая для разрабатываемого 
инжектора-линейного ускорителя по предва-
рительным расчетам составляет 9  кэВ/нуклон 
и складывается из начальной энергии разлета 
ионов и энергии, приобретаемой при ускорении 
в системе экстракции.

Другой кардинальный параметр линейного 
ускорителя RFQ  – отношение энергии уско-
ряемых ионов к их заряду  – предполагается 

настраиваемым в интервале 4–8  кэВ/заряд, 
что определяет выбор сорта ионов, отбираемых 
из источника: для ионов висмута зарядностью 
выше 26, железа  – в интервале 7–14, алюми-
ния – в интервале 4–7.

На рис.  9 приведен вид восстановленного 
энергетического спектра ионов висмута с заряд-
ностями, которые являются кандидатами для 
ускорения в разрабатываемом инжекторе. Точ-
ками показан дискретный ряд энергий настройки 
анализатора в процессе измерений. Как видно, 
энергия разлета основной массы ионов нахо-
дится в интервале 70–250 кэВ, средняя энергия 
ионов из ряда Bi27+– Bi30+ оценивается как 155, 
177, 189 и 200 кэВ соответственно. Таким обра-
зом, при использовании в инжекторе, например, 
иона Bi27+ необходимо приложить ускоряющее 
напряжение 63.9 кВ на первом экстракционном 
электроде. Те же данные на рис. 9 представлены 
в виде плотности парциальных токов, которые 
для перечисленных выше ионов оцениваются по 
пиковым амплитудам как 0.5, 0.4, 0.3 и 0.15 мА/см2 
соответственно. Подсчет плотности частиц во 
временном интервале 5 мкс дает значения, при-
веденные на рис. 10.

Аналогичные данные приведены на рис. 11–13 
для ионов Fe10+, Fe11+, Fe12+ и Fe14+ и на рис. 14–16 

Рис. 8. Усредненная форма плотности полного тока 
ионов висмута (кривая 2) и стандартные отклонения 
(кривые 1 и 3). Длина дрейфа 1935 мм: а – обзорная 
шкала, б – интервал прилета высокоэнергетических 

ионов.

Рис. 9. Энергетический спектр ионов висмута: 
1 (○) – Bi27+, 2 (∆) – Bi28+, 3 (◊) – Bi29+, 4 (☆) – Bi30+.

(а) (б)
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для ионов Al4+, Al5+, Al6+ и Al7+. Средняя энергия 
в наблюдаемом диапазоне составила для ионов 
железа соответственно 15, 10, 7.5 и 5 кэВ, а для 

Рис. 10. Парциальные токи ионов висмута, получа-
емые за системой экстракции: 1 (○) – Bi27+, 2 (∆) – 

Bi28+, 3 (◊) – Bi29+, 4 (☆) – Bi30+.

Рис. 11. Плотность числа ионов висмута в интервале 
5 мкс.

Рис. 12. Энергетический спектр ионов железа: 
1 (○) – Fe14+, 2 (∆) – Fe12+, 3 (◊) – Fe11+, 4 (☆) – Fe10+.

ионов алюминия – соответственно 2.2, 1.8, 1.8 
и 1.21 кэВ. Амплитуды плотности парциальных 
токов оцениваются как 0.4, 0.8, 2.1 и 9.1 мА/см2 

Рис. 13. Парциальные токи ионов железа, получае-
мые за системой экстракции: 1 (○) – Fe14+, 2 (∆) – 

Fe12+, 3 (◊) – Fe11+, 4 (☆) – Fe10+.
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Рис. 14. Плотность числа ионов железа Fe10+÷Fe14+ в 
интервале 5 мкс.

Рис. 15. Энергетический спектр ионов алюминия: 
1 (○) – Al7+, 2 (∆) – Al6+, 3 (◊) – Al5+, 4 (☆) – Al4+.

Рис. 16. Парциальные токи ионов алюминия, полу-
чаемые за системой экстракции: 1 (○) – Al7+, 2 (∆) – 

Al6+, 3 (◊) – Al5+, 4 (☆) – Al4+.

Рис. 17. Плотность числа ионов алюминия Al4+–Al7+ 
в интервале 5 мкс.
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для ионов железа и 0.7, 0.8, 1.0 и 1.21 мА/см2 для 
ионов алюминия соответственно. Плотности 
частиц показаны на рис. 14, 17 соответственно.

Оценка плотности частиц на длине экстрак-
ции в интервале времени 5  мкс для иона Bi27+ 

равна 2.8 ∙ 108 см–2, для ионов Fe14+ – 1.4 ∙ 1010 см–2, 
для ионов Al7+ – 7.6 ∙ 109 см–2.

Полученные результаты по характеристи-
кам генерируемых ионов в лазерно-плазмен-
ном источнике Курчатовского комплекса тео-
ретической и экспериментальной физики НИЦ 
“Курчатовский институт” (ККТЭФ НИЦ КИ) 
позволяют рассчитать необходимые параметры 
ионов на входе в линейный ускоритель RFQ раз-
рабатываемого инжектора частиц. Он отличается 
от описанной в этой работе конфигурации дрей-
фовой длиной, которая уменьшена до 1650 мм. 
Такие входные параметры ионов висмута, железа 
и алюминия приведены в табл. 1 с учетом сокра-
щения временного интервала использования 
ионного пучка до 3 мкс.
Таблица 1. Входные параметры ионов Bi, Fe и Al в ус-
ловиях сокращения временного интервала использо-
вания ионного пучка до 3 мкс

Тип 
иона

Средняя 
энергия,  

кэВ/нуклон

Напряжение 
экстракции, 

кВ

Плотность 
частиц,  
109 см–2

Bi30+ 0.957 56 0.04
Bi29+ 0.904 58.3 0.12
Bi28+ 0.847 60.9 0.18
Bi27+ 0.742 63.9 0.27
Fe14+ 0.268 35.1 13.4
Fe12+ 0.179 41.4 4.0
Fe11+ 0.134 45.3 2.0
Fe10+ 0.089 50.1 1.2
Al7+ 0.081 34.6 7.3
Al6+ 0.067 40.4 4.8
Al5+ 0.070 48.4 4.2
Al4+ 0.044 60.7 5.3

Полученные данные позволяют провести 
более детальные расчеты структуры линейного 
ускорителя-инжектора.

4. ЗАКЛЮЧЕНИЕ

В работе описаны устройство и параметры 
источника ионов, предназначенного для инжек-

тора частиц из широкого ряда элементов различ-
ной массы. Важной особенностью инжектора по 
техническим требованиям является оператив-
ность в перестройке типа генерируемых ионов из 
всего ряда элементов от легких до тяжелых.

В качестве примера из этого ряда элементов 
тестировались мишени из алюминия, железа и 
висмута, которые облучались при постоянном 
потоке лазерного излучения на мишени, уро-
вень которого выбирался из критерия дости-
жения достаточной ионизации ионов наиболее 
тяжелого элемента, которым в наших экспери-
ментах являлся висмут. Было обнаружено, что 
при уровне мощности лазера примерно 1.5 ГВт 
и фокусировке излучения на мишень длинно-
фокусным объективом с параметром F / D ≈ 8 
достигается уровень ионизации плазмы с доста-
точно высоким содержанием иона Bi27+, подхо-
дящего для дальнейшего ускорения в инжекторе. 
Для наибольшего упрощения технологии гене-
рации ионов меньшей массы достигнутый уро-
вень мощности лазера оставался неизменным, 
что максимально упрощало процесс переключе-
ния с одного элемента на другой. В таком режиме 
для смены типа генерируемого иона требовалась 
только смена мишени и напряжения экстракции 
для установления оптимальной энергии ионного 
пучка на входе в линейный ускоритель RFQ.

Проведенные измерения показали, что тести-
руемая технология облучения и генерации ионов 
оказывается вполне эффективной с точки зре-
ния генерации легких ионов, несмотря на то что 
при высоких плотностях излучения на мишени 
снижается полное число ионов требуемой для 
ускорения зарядности. Дело в том, что одним из 
требований к ионному пучку от источника явля-
ется фиксированная его длительность доста-
точно малой величины. При сохранении высо-
кой плотности потока облучения длительность 
пучков легких ионов сохраняется минимальной, 
что в пересчете на количество частиц в пучке 
требуемой длительности приводит к достаточно 
высоким показателям, удовлетворяющим требо-
ваниям к ускорительной схеме. На это указывают 
числа ионов железа и алюминия, полученные в 
описанных тестовых экспериментах.

В целом показано, что продемонстрирован-
ная технологическая схема лазерно-плазменного 
источника ионов удовлетворяет требованиям, 
сформулированным для разрабатываемого 
инжектора частиц в синхротрон.
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