ТЕХНИКА ЯДЕРНОГО ЭКСПЕРИМЕНТА

УДК 539.1.08

СЦИНТИЛЛЯЦИОННЫЙ ВРЕМЯПРОЛЕТНЫЙ ГОДОСКОП

© 2024 г. В. И. Алексеев^а, В. А. Басков^{а,*}, Е. А. Варфоломеева^а, В. А. Дронов^а, А. И. Львов^а, А. В. Кольцов^а, Ю. Ф. Кречетов^b, В. В. Полянский^а, С. С. Сидорин^а

^aФизический институт им. П.Н. Лебедева Российской академии наук Россия, 119991, Москва, Ленинский пр., 53

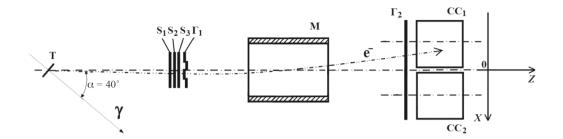
^bОбъединенный институт ядерных исследований Россия, 141980, Дубна, Московская обл., ул. Жолио-Кюри, 6

*e-mail: baskov@x4u.lebedev.ru, paxra1@mail.ru

Поступила в редакцию 17.03.2023 г. После доработки 28.06.2023 г. Принята к публикации 07.07.2023 г.

Представлены результаты исследований характеристик модуля сцинтилляционного время-пролетного годоскопа длиной 50 см. Определено, что координатное разрешение и эффективность регистрации модуля зависят от напряжений на делителях напряжений фотоэлектронных умножителей и расстояния от точки прохождения частицы до фотоэлектронных умножителей. Тестирования модуля с помощью пучка вторичных электронов ускорителя "Пахра" Физического института им. П.Н. Лебедева РАН с энергией 20 МэВ и с помощью радиоактивного источника 90 Sr+ 90 Y показали, что минимальные значения координатного разрешения составили $\sigma_x \approx 0.1$ см и $\sigma_x \approx 1.30$ см соответственно, а эффективность регистрации достигает величины $\epsilon \approx 53\%$.

DOI: 10.31857/S0032816224010036, **EDN:** GBJZXE


1. ВВЕДЕНИЕ

С целью нового поиска аномальных лептонов, начавшегося еще в 60-х годах, на тормозном пучке фотонов с энергией до 500 МэВ ускорителя "Пахра" ФИАН создана экспериментальная установка (рис. 1) [1], в которой для определения импульса и энергии частиц, вылетающих из мишени, используется времяпролетная методика. Для определения импульса и энергии частиц используются координатные сцинтилляционные годоскопы (Γ_1 и Γ_2), определяющие координату частицы в горизонтальной плоскости, и сцинтилляционный спектрометр. В ранней версии установки использовался сцинтилляционный спектрометр размером 200×200×200 мм³, перед которым располагался Γ_2 состоящий из 8 каналов (размер канала $20 \times 50 \times 5$ мм³) и перекрывающий в горизонтальной плоскости область перед сцинтилляционным спектрометром, равную 16 см.

Для увеличения энергетического диапазона регистрируемых частиц к существующему сцинтилляционному спектрометру в горизонтальной плоскости был добавлен дополнительный блок таких же размеров. В этом случае область регистрации частиц увеличилась до 40 см. Для перекрытия увеличенной области регистрации частиц и снижения количества каналов регистрации было решено использовать годоскоп с определением координаты прохождения частицы времяпролетным методом.

2. СЦИНТИЛЛЯЦИОННЫЙ ВРЕМЯПРОЛЕТНЫЙ ГОДОСКОП

С этой целью был создан сцинтилляционный времяпролетный годоскоп (СВПГ) (рис. 2), состоящий из 8 каналов, представляющих из себя набор из 8 палочек 3 или модулей из оргстекла на основе полиметилметакрилата (ПММА) с добавкой нафталина

Рис. 1. Схема экспериментальной установки по поиску тяжелого лептона на ускорителе ФИАН "Пахра": T — медная мишень; S_1 — S_3 — сцинтилляционные счетчики; Γ_1 и Γ_2 — сцинтилляционные годоскопы; M — постоянный магнит; CC_1 и CC_2 — сцинтилляционные спектрометры.

Рис. 2. Схема СВПГ: 1 — дюралюминиевый каркас, 2 — светозащитный кожух ФЭУ, 3 — сцинтилляционная палочка, 4 — металлизированный майлар, 5 — черная бумага, 6 — ФЭУ-85, 7 — делитель напряжения ФЭУ.

в качестве сцинтиллятора [2]. Размер каждого модуля $1.7 \times 50 \times 1$ см³. Модули расположены друг за другом в вертикальной плоскости, рабочие грани модуля шириной 1.7 см и длиной 50 см $(1.7 \times 50 \text{ см}^2)$ располагаются параллельно выходной грани межполюсного промежутка магнита М. Каждый модуль с противоположных торцов шириной 1 см и высотой 1.7 см просматривается двумя фотоэлектронными умножителями ФЭУ-85 6 с делителями напряжений 7, спаянными по стандартной схеме. Все грани модуля отполированы и, кроме торцевых граней, на которых расположены ФЭУ, обернуты металлизированным майларом 4 и светозащитной черной бумагой 5.

3. КАЛИБРОВКА СВПГ РАДИОАКТИВНЫМ ИСТОЧНИКОМ 90 SR $+^{90}$ Y

Предварительно с помощью радиоактивного источника ⁹⁰Sr+⁹⁰Y с максимальной и средней

энергией электронов 2.2 МэВ и около 1 МэВ соответственно были исследованы характеристики единичного модуля. Основными целями тестирования являлись определение зависимости координатного разрешения (σ_x) и эффективности регистрации электронов (ε) от напряжений на ФЭУ (левого U_1 и правого U_r) и положения радиоактивного источника (x) на рабочей грани модуля.

Схема тестирования модуля с помощью радиоактивного источника представлена на рис. За. За радиоактивным источником R располагался свинцовый коллиматор K (толщина 1.5 мм, диаметр отверстия 10 мм) и сцинтилляционный триггерный счетчик S_1 (размер $15\times15\times1$ мм³) со стандартным делителем напряжения. Модуль располагался за счетчиком S_1 с рабочей гранью 1.7×50 см². Расстояние между K и рабочей гранью составляло не более 1 мм.

Сигнал Start с триггерного счетчика S₁ через формирователь Φ_1 и задержку 3_1 подавался на запуск 4-входового время-цифрового преобразователя (ВЦП) (рис. 3а). На входы Анализ через формирователи Φ_2 , Φ_3 и задержки 3_2 , 3_3 подавались сигналы от двух Φ ЭУ, C_1 и C_2 , расположенных на торцах модуля. Сигнал Start также являлся сигналом, с помощью которого через крейт-контроллер системы САМАС проводилась запись сигналов с ФЭУ модуля в память компьютера (ПС). Время набора статистики составляло t = 300 с. При напряжении $U_{\rm S1} = 1000 \; {\rm B}$ на делителе напряжения счетчика S_1 рабочий счет (наличие радиоактивного источника 90 Sr+ 90 Y перед коллиматором K) и шумовой счет (отсутствие радиоактивного

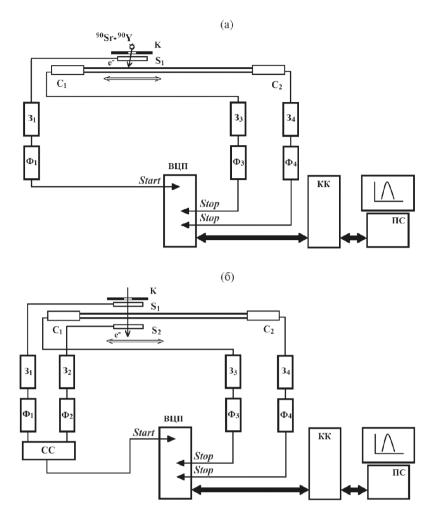
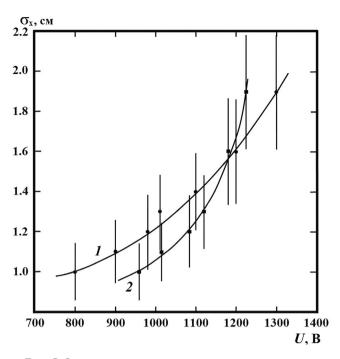


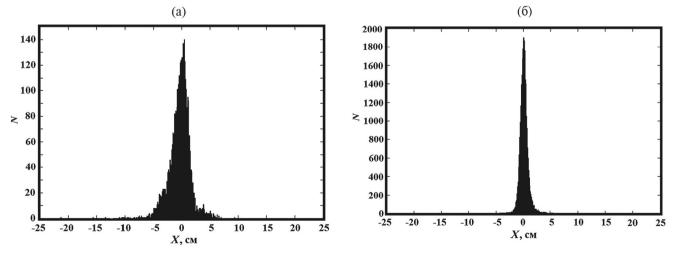
Рис. 3. Схемы калибровки СВПГ: а – калибровка с помощью радиоактивного источника; б – калибровка с помощью вторичного электронного пучка. S₁ и S₂ - триггерные сцинтилляционные счетчики; К - свинцовый коллиматор; C_1 , C_2 — каналы СВПГ; $3_1 - 3_4$ — блоки временных задержек; $\Phi_1 - \Phi_4$ — блоки формирователей со следящим порогом; СС – схема совпадений; ВЦП – время-цифровой преобразователь; Start – сигнал запуска блока ВЦП; Stop – временные сигналы с каналов C₁ и C₂ СВПГ; КК – крейт-контроллер системы САМАС; ПС – персональный компьютер.

ставляли $N_p \sim 1100 \; {\rm c}^{-1}$ и $N_u \sim 3 \; {\rm c}^{-1}$ соответственно.


Типичное распределение координат при расположении радиоактивного источника по центру модуля (x = 0) показано на рис. 4a. Координатное разрешение в данной точке без вычета диаметра отверстия коллиматора составило $\sigma_{\rm x} = \sigma_{\rm Sr+Y} \approx 2.3$ см. Распределения координат получены в два этапа. На первом этапе при заданной координате положения радиоактивного источника (в данном случае x = 0) определялись спектры времени прихода света от точки взаимодействия электронов с модулем до обоих ФЭУ. По полученным временным спектрам определялись средние времена прохождений

источника 90 Sr+ 90 Y перед коллиматором K) со- света ($< t_{1(r)} >$) от источника до каждого из Φ ЭУ. На втором этапе с помощью простой формулы определялась координата положения радиоактивного источника: $x = (x_1 + x_r)/2$, где x_1 и x_r –координаты положения источника, определенные по времени прихода света от точки взаимодействия электрона с модулем до каждого из ФЭУ $(x_{\rm l(r)}=x_0(1-t_{\rm l(r)}/\!\!<\!t_{\rm l(r)}\!\!>),$ где x_0 — положение источника по центру модуля ($x_0=25$ см), $t_{\rm l(r)}$ — время прохождения света от источника до левого (правого) фотокатода ФЭУ, измеренное с помощью ВЦП (канал ВЦП), $\langle t_{\rm l(r)} \rangle$ — среднее время прохождения света от источника до фотокатода ФЭУ, являющееся средним каналом временного спектра левого (правого) ФЭУ (канал ВЦП).

На рис. 5 представлены зависимости координатного разрешения модуля СВПГ (о,) от напряжения на делителях напряжения $\Phi \ni Y (1 - \text{левого}, 2 - \text{певого})$ правого) при положении радиоактивного источника по центру модуля x = 0. Диаметр коллиматора К на данном и последующих рисунках вычтен. Видно, что с увеличением напряжений на делителях напряжений ФЭУ координатное разрешение СВПГ ухудшается. Можно предположить, что хорошее координатное разрешение $(\sigma_{\rm x} \approx 1.0 - 1.2 \, {\rm cm})$ при относительно небольших напряжениях ($U \approx 800-1100 \text{ B}$) связано с регистрацией ФЭУ прямого света от электронного трека в сцинтилляторе модуля, т. е. в общем количестве регистрируемого света величина света, связанного с внутренним отраженным светом от граней сцинтилляционной пластины, небольшая. При увеличении напряжения $(U > 1100 \text{ B}) \Phi \Im Y$ начинают регистрировать более слабый отраженный свет и, несмотря на увеличение общей величины отраженного света, число флуктуаций в поглощении света модулем увеличивается, что ведет к увеличению неточности в определении координаты точки регистрации электрона.


На рис. 6 представлена зависимость эффективности регистрации электронов модулем СВПГ (ϵ) от напряжений на делителях напряжений ФЭУ при $U = U_1 = U_r$ и x = 0

$$\varepsilon = (N_{\rm lr} / N) \cdot 100\%,$$

Рис. 5. Зависимости координатного разрешения модуля СВПГ от напряжений на делителях напряжения Φ ЭУ (I — левого, 2 — правого) при положении радиоактивного источника по центру модуля (x = 0).

где $N_{\rm lr}$ — число отсчетов при одновременном срабатывании левого и правого ФЭУ СВПГ за время набора статистики, N — число отсчетов счетчика S также за время набора статистики. Видно, что, начиная с напряжения $U \approx 1000$ B, зависимость ε от U имеет тенденцию выхода на "плато"

Рис. 4. Распределение координат, полученных с помощью модуля СВПГ, при положении по центру модуля (x=0) радиоактивного источника (a) и счетчиков S_1 и S_2 в случае прохождения через СВПГ электронов с энергией 20 МэВ (б).

с величиной $\varepsilon \sim 9\%$. Ошибки величин ε (кривая I) не превысили примерно 5%.

На рис. 7 представлено изменение σ_x модуля СВПГ в зависимости от положения радиоактивного источника на рабочей грани модуля I при напряжениях на делителях напряжения ФЭУ $U_1 = 1010$ В (кривая I) и $U_r = 1120$ В (кривая 2). Видно, что наилучшее координатное разрешение $\sigma_x \approx 1.3$ см наблюдается в центре модуля (x = 0) и ухудшается к торцам до $\sigma_x \sim 2.2$ см. Диапазон изменения координатного разрешения от центра модуля к торцам составил $\Delta \sigma_x \sim 1$ см. Таким образом, полученное координатное разрешение оказалось не хуже ширины канала годоскопа, используемого ранее [1].

4. КАЛИБРОВКА СВПГ ЭЛЕКТРОНАМИ С ЭНЕРГИЕЙ 20 МЭВ

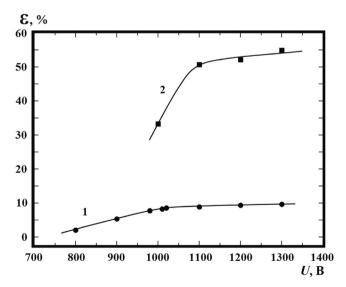
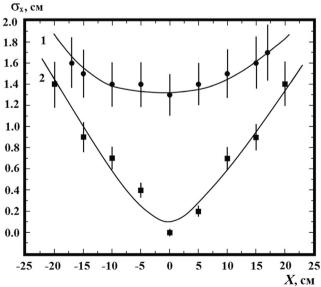

Дальнейшие исследования координатного разрешения и эффективности регистрации модуля СВПГ были продолжены с применением пучка вторичных электронов, формируемых магнитом СП-3 ускорителя "Пахра" ФИАН [3].

Схема тестирования модуля с помощью пучка вторичных электронов представлена на рис. 36. Пучок вторичных электронов с энергией 20 МэВ формировался свинцовым коллиматором К с диаметром входного отверстия 10


мм и регистрировался сцинтилляционными счетчиками S_1 и S_2 размером $15\times15\times1$ мм³ и модулем СВПГ. В этой схеме сигналом *Start* являлся сигнал со схемы совпадения (СС), которая формировала сигнал от совпадения сигналов со сцинтилляционных счетчиков S_1 и S_2 . Далее, сигнал *Start* подавался на запуск 4-входового ВЦП. Сигналы *Stop*, подаваемые на входы *Анализ* через формирователи Φ_3 , Φ_4 и задержки A_3 , A_4 , являлись сигналами от двух A_4 0. С A_4 1 и A_5 2, расположенных на торцах модуля СВПГ.

На рис. 4б представлено распределение координат прохождения вторичных электронов через модуль СВПГ при расположении коллиматора К и счетчиков S_1 и S_2 по центру модуля (x=0). Координатное разрешение в данной точке без вычета диаметра отверстия коллиматора составило $\sigma_x = \sigma_e \approx 1.1$ см.

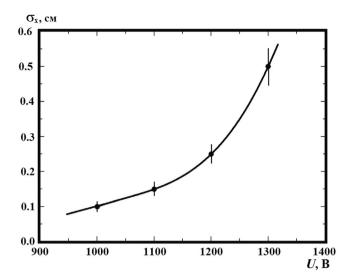

На рис. 6 показана также зависимость эффективности регистрации модулем СВПГ электронов вторичного электронного пучка 2 от напряжений на делителях напряжений ФЭУ $(U=U_{\rm l}=U_{\rm r})$ при x=0. Видно, что, как и в случае использования радиоактивного источника, начиная с $U\approx 1100$ В, зависимость ε от U имеет тенденцию выхода на "плато" с величиной $\varepsilon\sim 53\%$, т. е. примерно в 6 раз выше, чем при регистрации модулем электронов от радиоактивного источника. Это объясняется тем, что

Рис. 6. Зависимость эффективности регистрации электронов модулем СВПГ от напряжений на делителях напряжений ФЭУ при $U = U_1 = U_r$ (x = 0) (электроны от радиоактивного источника (x = 0)) тронный пучок с энергией 20 МэВ (x = 0).

Рис. 7. Зависимость координатного разрешения модуля СВПГ от положения радиоактивного источника (I) и счетчиков S_1 , S_2 (2) на рабочей грани модуля СВПГ.

Рис. 8. Зависимость координатного разрешения модуля СВПГ от напряжения на делителях напряжения ФЭУ при $U = U_1 = U_r$ и положении счетчиков S_1 и S_2 по центру модуля (x = 0).

средняя энергия электронов радиоактивного источника, равная примерно 1 МэВ, полностью поглощается модулем СВПГ, но при использовании вторичного электронного пучка 20 МэВ средняя энергия, поглощенная модулем толщиной 1 см, составляет около 2 МэВ [4]. Поэтому количество света, приходящего на ФЭУ в случае электронного пучка, больше, что приводит к увеличению є. Ошибки величин є (кривая 2) не превысили примерно 1%.

Зависимость σ_x модуля СВПГ от положения счетчиков S_1 , S_2 и K на рабочей грани модуля при напряжениях на делителях напряжения ФЭУ $U = U_1 = U_r = 1100$ В представлена на рис. 7 (кривая 2). Наилучшее координатное разрешение $\sigma_x \approx 0.1$ см наблюдается в центре при x = 0 с ухудшением к торцам до $\sigma_x \sim 1.8$ см. Тем не менее полученное координатное разрешение не хуже ширины канала годоскопа, который использовался первоначально [1].

При расположении счетчиков S_1 , S_2 и K по центру модуля СВПГ (x=0) была исследована зависимость σ_x от напряжений на делителях напряжений ФЭУ при $U=U_1=U_r$ (рис. 8). Видно, что, как и на рис. 5, σ_x уменьшается при увеличении напряжений с $\sigma_x \approx 0.1$ см при U=1000 В до $\sigma_x \approx 0.5$ см при U=1300 В. Применение вторичных электронов со средней энергией 20 МэВ увеличивает σ_x в центре модуля практически на порядок.

Надо отметить, что на рис. 5—8 линии, описывающие экспериментальные результаты, проведены для наглядности. Погрешности полученных значений координатного разрешения на рис. 5, 7, 8 определялись процедурой подгонки координатных спектров полиномом стандартной программы OriginPro 9.0 и составили 15—20% от значений величин, представленных ни рисунках.

5. ЗАКЛЮЧЕНИЕ

В результате исследования характеристик модуля СВПГ длиной 50 см на основе нафталина в метилметакрилате на электронах радиоактивного источника 90 Sr+ 90 Y и пучке вторичных электронов с энергией 20 МэВ наилучшие координатные разрешения при напряжениях на обоих ФЭУ $U = U_1 = U_r \approx 1100$ В обнаружены в центре модуля и составили $\sigma_x \approx 1.3$ см и $\sigma_x \approx 0.1$ см соответственно. На торцах модуля координатное разрешение хуже и достигает $\sigma_x \sim 2.2$ см и $\sigma_x \sim 1.8$ см соответственно. Эффективность регистрации модуля СВПГ зависит от напряжения на делителях напряжения и достигает максимальной величины $\epsilon \approx 53\%$.

Таким образом, СВПГ из 8 модулей способен определять точку прохождения заряженной частицы в горизонтальной плоскости с хорошей точностью и удовлетворительной величиной эффективности регистрации заряженных частиц. СВПГ может быть использован в установке для дальнейшего поиска "аномальных лептонов".

СПИСОК ЛИТЕРАТУРЫ

- 1. Алексеев В.И., Басков В.А., Дронов В.А., Львов А.И., Кольцов А.В., Кречетов Ю.Ф., Полянский В.В., Сидорин С.С. // ПТЭ. 2021. № 1. С. 40.
 - https://doi.org/10.31857/S003281622101002X
- 2. Медведев М.Н. Сцинтилляционные детекторы, Москва: Атомиздат, 1977.
- 3. Алексеев В.И., Архангельский А.И., Басков В.А., Батищев А.Г., Власик К.Ф., Гальпер А.М., Дронов В.А., Львов А.И., Кольцов А.В., Полянский В.В., Сидорин С.С., Утешев З.М. // ПТЭ. 2023. № 6. С. 59.
- 4. Алексеев В.И., Басков В.А., Дронов В.А., Львов А.И., Кольцов А.В., Кречетов Ю.Ф., Полянский В.В. // ПТЭ. 2020. № 5. С. 1.

https://doi.org/10.31857/S0032816220050079