Stocks of "Blue Carbon" in Soils of Coastal Ecosystems of High-Latitude Seas of the Northern Hemisphere

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The article presents a review of data from Russian and foreign sources, as well as our own research, concerning carbon stocks in soils of coastal zone ecosystems: marshes and seagrasses of the USA, Canada, Great Britain, continental Europe, Scandinavia and Greenland, as well as Russia. These soils are formed under conditions of amphibious water regime and are mainly classified as Tidalic Fluvisols. The mean values of carbon stock in the 0–10 cm layer of marsh soils were 34.3 ± 21.5 t/ha, and the aquatic soils of marine meadows were 7.8 ± 6.5 t/ha. As a rule, carbon reserves in soils directly depend on the productivity of phytocenosis. A positive dependence of carbon stock on seawater temperature has been established. It is shown that with increasing salinity of water, carbon reserves in the soils of marshes decrease, while in marine meadows they increase. On the shores, carbon reserves are maximal in the soils of the rarely flooded high marsh. In the mineral soils of the marshes, higher carbon reserves are observed in heavy-textured soils than in less clayey soils. High carbon reserves in sandy–sandy loam soils are commonly found in the soils of marine meadows. The results of the study can be used to assess the impact of coastal ecosystems on the content, dynamics and potential for carbon absorption, climate change, and serve as a basis for developing measures for the protection and rational use of natural resources in coastal landscapes.

Авторлар туралы

I. Bagdasarov

Lomonosov Moscow State University

Moscow, Russia

A. Bobrik

Lomonosov Moscow State University

Email: ann-bobrik@yandex.ru
ORCID iD: 0000-0001-6544-4137
Moscow, Russia

G. Kazhukalo

Lomonosov Moscow State University

Moscow, Russia

N. Oreshnikova

Lomonosov Moscow State University

Moscow, Russia

P. Krasilnikov

Lomonosov Moscow State University

ORCID iD: 0000-0001-7084-9972
Moscow, Russia

Әдебиет тізімі

  1. Апкин Р.Н. Водно-болотные угодья как природный фронтир // Журнал фронтирных исследований. 2021. С. 226–241.
  2. Артемьева З.С., Юртаев А.В., Александровский А.Л., Зазовская Э.П. Органическое вещество погребенной торфяной почвы на острове Белый (Карское море) // Бюл. Почв. ин-та им. В.В. Докучаева. 2016. № 85. С. 36–55. https://doi.org/10.19047/0136-1694-2016-85-36-56
  3. Багдасаров И.Е., Бобрик А.А., Кажукало Г.A., Теребова Е.Н., Павлова М.А., Красильников П.В. Запасы "голубого углерода" и эмиссия диоксида углерода из почв маршевых экосистем Поморского берега Белого моря // Почвоведение. 2025. № 10. С. 1310–1326.
  4. Багдасаров И.Е., Цейц М.А., Крюкова Ю.А., Таскина К.Б., Конюшкова М.В. Сравнительная характеристика почвенного и растительного покрова томболо побережий Белого и Балтийского морей // Вестник Моск. ун-та. Сер. 17, почвоведение. 2023. С. 3–15. https://doi.org/10.55959/MSU0137-0944-17-2023-78-1-3-15
  5. Бобрик А.А., Кажукало Г.A., Багдасаров И.Е., Теребова Е.Н., Павлова М.А., Красильников П.В. Закономерности эмиссии диоксида углерода из почв маршевых экосистем юго-востока Баренцева моря // Почвоведение. 2025. С. 1055–1068. https://doi.org/10.31857/S0032180X25080056
  6. Богданов Д.В. Региональная физическая география Мирового океана. М.: Высш. шк., 1985. 176 с.
  7. Валеева Э.И., Московченко Д.В. Роль водно-болотных угодий в устойчивом развитии севера Западной Сибири. Тюмень: Изд-во ИПОС СО РАН, 2001. 229 с.
  8. Водно-болотные угодья России. Т. 2. Ценные болота. М: Wetlands International Publication. 1999. № 49. 88 с.
  9. Водно-болотные угодья России. Т. 3. Водно-болотные угодья, внесенные в Перспективный список Рамсарской конвенции. М.: Wetlands International Global Series, 2000. № 3. 490 с.
  10. Губин С.В., Лупачев А.В. Подходы к классификации почв аккумулятивных берегов морей восточного сектора российской Арктики // Почвоведение. 2022. С. 25–32. https://doi.org/10.31857/S0032180X22010051
  11. Губин С.В., Лупачев А.В., Ходжаева А.К. Почвы аккумулятивных берегов морей восточного сектора российской Арктики // Почвоведение. 2022. С. 1073–1085. https://doi.org/10.31857/S0032180X22090076
  12. Кузнецова А.М. Эволюция морских отложений в маршевые почвы на различных типах берегов // Вестник Моск. ун-та. Сер. 17, почвоведение. 1999. С. 20–27.
  13. Мосеев Д.С., Сергиенко Л.А. Структура растительного покрова юго-восточного побережья Белого моря (залив Сухое море) // Hortus Botanicus. 2016. Т. 11. С. 57–71.
  14. Нестерова О.В. Особенности процессов гумусообразования в морской среде на примере залива Петра Великого. Автореф. дис. … канд. биол. наук. Владивосток, 2005. 20 с.
  15. Орешникова Н.В., Красильников П.В., Шоба С.А. Маршевые почвы Карельского берега Белого моря // Вестник Моск. ун-та. Сер. 17, почвоведение. 2012. С. 13–20.
  16. Полохин О.В., Макаревич Р.А., Клышевская С.В. Содержание органического углерода в подводных почвах бухты Троицы (Японское море) // Международный научно-исследовательский журнал. 2021. № 12. https://doi.org/10.23670/IRJ.2021.114.12.050
  17. Сафьянов Г.А. Береговая зона моря как экосистема // Эколого-геоморфологические исследования. М.: Изд-во МГУ, 1995. С. 5–20.
  18. Сергиенко Л.А. Структура и динамика приморских растительных сообществ Поморского и Карельского берегов Белого моря // Биологические ресурсы Белого моря и внутренних водоемов Европейского Севера. Матер. XXVII Междунар. конф. Петрозаводск: КарНЦ РАН, 2009. С. 499–503.
  19. Сидорова В.А., Святова Е.Н., Цейц М.А. Пространственное варьирование свойств маршевых почв и их влияние на растительность (Кандалакшский залив) // Почвоведение. 2015. С. 259–259. https://doi.org/10.7868/S0032180X15030119
  20. Хитров Н.Б., Никитин Д.А. Иванова М.В., Семенов М.В. Пространственно-временная изменчивость содержания и запасов органического вещества почвы: аналитический обзор // Почвоведение. 2023. № 12. С. 1493–1521. https://doi.org/ 10.31857/S0032180X23600841
  21. Цейц М.А., Добрынин Д.В. Морфогенетическая диагностика и систематика маршевых почв Карельского Беломорья // Почвоведение. 1997. C. 411–416.
  22. Цейц М.А., Добрынин Д.В., Белозерова Е.А. Структурная организация почвенного и растительного покрова маршей Поморского берега Белого моря // Экологические функции почв Восточной Фенноскандии. Петрозаводск, 2000. С. 124–132.
  23. Шамрикова Е.В., Денева С.В. Особенности накопления и распределения химических элементов в прибрежных почвах (на примере побережья Баренцева моря) // Биогеохимические инновации. 2020. Т. 2. С. 135–142.
  24. Шамрикова Е. В., Денева С.В., Кубик О.С., Пунегов В.В., Кызъюрова Е.В., Зуева О.М. Водорастворимые органические соединения торфяных почв cеверной части Большеземельской тундры // Вестник Ин-та биологии Коми НЦ УрО РАН. 2016. С. 19–23. https://doi.org/10.31140/j.vestnikib.2016.4(198).3
  25. Шамрикова Е. В., Денева С.В., Панюков А.Н., Кубик О.С. Свойства почв и характер растительности побережья Хайпудырской губы Баренцева моря // Почвоведение. 2018. С. 402–412. https://doi.org/10.7868/S0032180X18040020
  26. Шляхов С.А., Костенков Н.М. Классификация и морфологические особенности почв равнинных морских побережий // Почвоведение. 1998. № 10. С. 1157–1163.
  27. Шляхов С.А., Костенков Н.М. Почвы Тихоокеанского побережья России, их классификация, оценка и использование. Владивосток: Дальнаука, 2000. 183 с.
  28. Abril G., Nogueira M., Etcheber H., Cabeçadas G., Lemaire E., Brogueira M.J. Behaviour of organic carbon in nine contrasting European estuaries // Estuarine, Coastal Shelf Sci. 2002. V. 54. С. 241–262. https://doi.org/10.1006/ecss.2001.0844
  29. Adams C.A., Andrews J.E., Jickells T. Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments // Sci. Total Environ. 2012. V. 434. P. 240–251. https://doi.org/10.1016/j.scitotenv.2011.11.058
  30. Allen J.R.L., Pye K. Coastal saltmarshes: their nature and importance // Saltmarshes: Morphodynamics, Conservation and Engineering Significance. / Eds. Allen J.R.P., Pye K. Cambridge University Press, 1992. P. 1–18.
  31. Apostolaki E.T., Lavery P.S., Litsi-Mizan V., Serrano E., Inostroza K., Gerakaris V., Serrano O. Patterns of carbon and nitrogen accumulation in seagrass (Posidonia oceanica) meadows of the Eastern Mediterranean Sea // J. Geophys. Res.: Biogeosciences. 2024. V. 129. P. e2024JG008163. https://doi.org/10.1029/2024JG008163
  32. Arnosti C., Jørgensen B.B., Sagemann J., Thamdrup B. Temperature dependence of microbial degradation of organic matter in marine sediments: polysaccharide hydrolysis, oxygen consumption, and sulfate reduction // Marine Ecology Progress Series. 1998. V. 165. P. 59–70. https://doi.org/10.3354/meps
  33. Asmus H., Asmus R. Material exchange and food web of seagrass beds in the Sylt-Rømø Bight: how significant are community changes at the ecosystem level? // Helgoland Marine Research. 2000. V. 54. P. 137–150. https://doi.org/10.1007/s101520050012
  34. Avnimelech Y., Ritvo G., Meijer L.E., Kochba M. Water content, organic carbon and dry bulk density in flooded sediments // Aquacultural Engineering. 2001. V. 25. P. 25–33. https://doi.org/10.1016/S0144-8609(01)00068-1
  35. Baden S.P., Pihl L. Abundance, biomass and production of mobile epibenthic fauna in Zostera marina (L.) meadows, western Sweden // Ophelia. 1984. V. 23. P. 65–90. https://doi.org/10.1080/00785236.1984.10426605
  36. Bagdasarov I., Tseits M., Kryukova I., Taskina K., Bobrik A., Ilichev I., Cheng J., Xu L., Krasilnikov P. Carbon stock in coastal ecosystems of tombolos of the White and Baltic Seas // Land. 2023. V. 13. P. 49. https://doi.org/10.3390/land13010049
  37. Bale A.J., Widdows J., Harris C.B., Stephens J.A. Measurements of the critical erosion threshold of surface sediments along the Tamar Estuary using a mini-annular f lume // Continental Shelf Research. 2006. V. 26. № 10. С. 1206–1216. https://doi.org/10.1016/j.csr.2006.04.003
  38. Barrón C., Duarte C.M. Dissolved organic carbon pools and export from the coastal ocean // Global Biogeochemical Cycles. 2015. V. 29. P. 1725–1738. https://doi.org/10.1002/2014GB005056
  39. Barry A., Ooi S.K., Helton A.M., Steven B., Elphick C.S., Lawrence B.A. Vegetation zonation predicts soil carbon mineralization and microbial communities in southern New England salt marshes // Estuaries and Coasts. 2021. V. 45. P. 168-180. https://doi.org/10.1007/s12237-021-00943-0
  40. Beaumont N.J., Jones L., Garbutt A., Hansom J.D., Toberman M. The value of carbon sequestration and storage in coastal habitats // Estuarine, Coastal Shelf Sci. 2014. V. 137. P. 32–40. https://doi.org/10.1016/j.ecss.2013.11.022
  41. Bergamaschi B.A., Tsamakis E., Keil R.G., Eglinton T.I., Montluçon D.B., Hedges J.I. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments // Geochim. Cosmochim. Acta. 1997. V. 61. P. 1247–1260. https://doi.org/10.1016/S0016-7037(96)00394-8
  42. Bertness M.D. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh // Ecology. 1991. V. 72. P. 138–148. https://doi.org/10.2307/1938909
  43. Billman M., Santos I.R., Jahnke M. Small carbon stocks in sediments of Baltic Sea eelgrass meadows // Frontiers Marine Sci. 2023. V. 10. P. 1219708. https://doi.org/10.3389/fmars.2023.1219708
  44. Boorman L.A. Saltmarsh review. An overview of coastal saltmarshes, their dynamic and sensitivity characteristics for conservation and management. 2003. JNCC Report, No. 334. 113 p.
  45. Boorman L.A., Garbutt A., Barratt D. The role of vegetation in determining patterns of the accretion of salt marsh sediment // Geological Society. Special Publications. 1998. V. 139. P. 389–399. https://doi.org/10.1144/GSL.SP. 1998.139.01.29
  46. Boschker H.T.S., De Brouwer J.F.C., Cappenberg T.E. The contribution of macrophyte‐derived organic matter to microbial biomass in salt‐marsh sediments: Stable carbon isotope analysis of microbial biomarkers // Limnology and Oceanography. 1999. V. 44. P. 309–319. https://doi.org/10.4319/lo.1999.44.2.0309
  47. Boström C., Baden S.P., Krause-Jensen D., Green E.P., Short F.T. The seagrasses of Scandinavia and the Baltic Sea // World Atlas of Seagrasses. Berkeley: University of California Pres. 2003. P. 27–37.
  48. Buczko U., Jurasinski G., Glatzel S., Karstens S. Blue carbon in coastal Phragmites wetlands along the southern Baltic Sea // Estuaries and Coasts. 2022. V. 45. P. 2274–2282. https://doi.org/10.1007/s12237-022-01085-7
  49. Cabello-Pasini A., Muñiz-Salazar R., Ward D. H. Annual variations of biomass and photosynthesis in Zostera marina at its southern end of distribution in the North Pacific // Aquatic Botany. 2003. V. 76. P. 31–47. https://doi.org/10.1016/S0304-3770(03)00012-3
  50. Caffrey J.M., Kemp W.M. Seasonal and spatial patterns of oxygen production, respiration and root-rhizome release in Potamogeton perfoliatus L. and Zostera marina L. // Aquatic Botany. 1991. V. 40. P. 109–128. https://doi.org/10.1016/0304-3770(91)90090-R
  51. Chapman V.J. Wet Coastal Ecosystems. Elsevier, Amsterdam, 1977. P. 1–29
  52. Chastain S.G., Kohfeld K., Pellatt M.G. Carbon stocks and accumulation rates in salt marshes of the Pacific coast of Canada // Biogeosciences Discussions. 2018. P. 1–45. https://doi.org/10.5194/bg-2018-166
  53. Chastain S.G., Kohfeld K.E., Pellatt M.G., Olid C., Gailis M. Quantification of Blue Carbon in Salt Marshes of the Pacific Coast of Canada // Biogeosciences Discussions. 2021. V. 19. P. 1–41. https://doi.org/10.5194/bg-19-5751-2022
  54. Chmura G.L., Hung G.A. Controls on salt marsh accretion: A test in salt marshes of Eastern Canada // Estuaries. 2004. V. 27. P. 70–81. https://doi.org/10.1007/BF02803561
  55. Chmura G.L., Kellman L., Guntenspergen G.R. The greenhouse gas flux and potential global warming feedback of a northern macrotidal and microtidal salt marsh // Environ. Res. Lett. 2011. V. 6. P. 044016. https://doi.org/10.1088/1748-9326/6/4/044016
  56. Chmura G.L., Anisfeld S.C., Cahoon D.R., Lynch J.C. Global carbon sequestration in tidal, saline wetland soils // Global Biogeochemical Cycles. 2003. V. 17. 12 p. https://doi.org/10.1029/2002GB001917
  57. Clausen K.K., Krause-Jensen D., Olesen B., Marbà N. Seasonality of eelgrass biomass across gradients in temperature and latitude // Marine Ecology Progress Series. 2014. V. 506. P. 71–85. https://www.jstor.org/stable/24894600
  58. Collier C.J., Uthicke S., Waycott M. Thermal tolerance of two seagrass species at contrasting light levels: implications for future distribution in the Great Barrier Reef // Limnology and Oceanography. 2011. V. 56. P. 2200–2210. https://doi.org/10.4319/lo.2011.56.6.2200
  59. Connor R.F., Chmura G.L., Beecher C.B. Carbon accumulation in Bay of Fundy salt marshes: implications for restoration of reclaimed marshes // Global Biogeochemical Cycles. 2001. V. 15. P. 943–954. https://doi.org/10.1029/2000GB001346
  60. Costanza R., d’Arge R., De Groot R., Farber S., Grasso M., Hannon B., Van Den Belt M. The value of the world’s ecosystem services and natural capital // Nature. 1997. V. 387. № 6630. P. 253–260.
  61. Craft C. Freshwater input structures soil properties, vertical accretion, and nutrient accumulation of Georgia and US tidal marshes // Limnology and Oceanography. 2007. V. 52. P. 1220–1230. https://doi.org/10.4319/lo.2007.52.3.1220
  62. Crain C.M., Silliman B.R., Bertness S.L., Bertness M.D. Physical and biotic drivers of plant distribution across estuarine salinity gradients // Ecology. 2004. V. 85. P. 2539–2549. https://doi.org/10.1890/03-0745
  63. Dahl M., Asplund M.E., Björk M., Deyanova D., Infantes E., Isaeus M., Nyström Sandman A., Gullström M. The influence of hydrodynamic exposure on carbon storage and nutrient retention in eelgrass (Zostera marina L.) meadows on the Swedish Skagerrak coast // Scientific Reports. 2020. V. 10. P. 13666. https://doi.org/10.1038/s41598-020-70403-5
  64. Dahl M., Asplund M.E., Deyanova D., Franco J.N., Koliji A., Infantes E., Perry D., Björk M., Gullström M. High seasonal variability in sediment carbon stocks of cold‐temperate seagrass meadows // J. Geophys. Res.: Biogeosciences. 2020. V. 125. P. e2019JG005430. https://doi.org/10.1029/2019JG005430
  65. Dahl K., Josefson A.B., Göke C., Christensen J.P.A., Hansen J.L., Markager S., Bonsdorff E. Climate change impacts on marine biodiversity and habitats in the Baltic Sea–and possible human adaptations // Coastline Reports. 2013. V. 1. P. 1–35
  66. Dahl M., Deyanova D., Gütschow S., Asplund M.E., Lyimo L.D., Karamfilov V., Gullström M. Sediment properties as important predictors of carbon storage in Zostera marina meadows: a comparison of four European areas // PLoS One. 2016. V. 11. P. e0167493. https://doi.org/10.1371/journal.pone.0167493
  67. de Leeuw J., de Munck W., Olff H., Bakker J.P. Does zonation reflect the succession of salt-marsh vegetation? A comparison of an estuarine and a coastal bar island marsh in The Netherlands // Acta Botanica Neerlandica. 1993. V. 42. P. 435–445.
  68. Drake K., Halifax H., Adamowicz S.C., Craft C. Carbon sequestration in tidal salt marshes of the Northeast United States // Environ. Managem. 2015. V. 56. P. 998–1008. https://doi.org/10.1007/s00267-015-0568-z
  69. Duarte C.M. Temporal biomass variability and production/biomass relationships of seagrass communities // Marine Ecology Progress Series. 1989. V. 51. P. 269–276.
  70. Duarte C.M., Cebrián J. The fate of marine autotrophic production // Limnology and Oceanography. 1996. V. 41. P. 1758–1766. https://doi.org/10.4319/lo.1996.41.8.1758
  71. Duarte C.M., Chiscano C.L. Seagrass biomass and production: a reassessment // Aquatic Botany. 1999. V. 65. P. 159–174. https://doi.org/10.1016/S0304-3770(99)00038-8
  72. Duarte C.M., Middelburg J.J., Caraco N. Major role of marine vegetation on the oceanic carbon cycle // Biogeosciences. 2005. V. 2. P. 1–8. https://doi.org/10.5194/bg-2-1-2005
  73. Duarte C., Losada, I., Hendriks I., Mazarrasa I., Marbà N. The role of coastal plant communities for climate change mitigation and adaptation // Nature Climate Change. 2013. V. 3. № 11. P. 961–968. https://doi.org/10.1038/nclimate1970
  74. Elschot K., Bakker J.P., Temmerman S., van de Koppel J., Bouma T.J. Ecosystem engineering by large grazers enhances carbon stocks in a tidal salt marsh // Marine Ecology Progress Series. 2015. V. 537. P. 9–21. https://www.jstor.org/stable/24895986
  75. Enríquez S.C.M.D., Duarte C.M., Sand-Jensen K. Patterns in decomposition rates among photosynthetic organisms: the importance of detritus C: N: P content // Oecologia. 1993. V. 94. P. 457–471. https://doi.org/10.1007/BF00566960
  76. Eriander L. Light requirements for successful restoration of eelgrass (Zostera marina L.) in a high latitude environment–acclimatization, growth and carbohydrate storage // J. Experimental Marine Biol. Ecol. 2017. V. 496. P. 37–48. https://doi.org/10.1016/j.jembe.2017.07.010
  77. Fonseca M.S., Fisher J.S., Zieman J.C., Thayer G.W. Influence of the seagrass, Zostera marina L., on current flow // Estuarine, Coastal Shelf Sci.1982. V. 15. P. 351–364. https://doi.org/10.1016/0272-7714(82)90046-4
  78. Ford H., Garbutt A., Duggan-Edwards M., Pagès J.F., Harvey R., Ladd C., Skov M.W. Large-scale predictions of salt-marsh carbon stock based on simple observations of plant community and soil type // Biogeosciences. 2019. № 16. P. 425–436. https://doi.org/10.5194/bg-16-425-2019
  79. Ford H., Garbutt A., Jones L., Jones D.L. Methane, carbon dioxide and nitrous oxide fluxes from a temperate salt marsh: Grazing management does not alter Global Warming Potential // Estuarine, Coastal Shelf Sci.2012. V. 113. P. 182–191. https://doi.org/10.1016/j.ecss.2012.08.002
  80. Ford M.A., Grace J.B. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh // J. Ecology. 1998. V. 86. P. 974–982. https://doi.org/10.1046/j.1365-2745.1998.00314.x
  81. Fourqurean J.W., Duarte C.M., Kennedy H., Marbà N., Holmer M., Mateo M.A., Serrano O. Seagrass ecosystems as a globally significant carbon stock // Nature Geoscience. 2012. V. 5. P. 505–509. https://doi.org/10.1038/ngeo1477
  82. Gagnon K., Thormar J., Fredriksen S., Potouroglou M., Albretsen J., Gundersen H., Hancke K., Rinde E., Wathne C., Norderhaug K.M. Carbon stocks in Norwegian eelgrass meadows across environmental gradients // Scientific Reports. 2024. V. 14. P. 25171. https://doi.org/10.1038/s41598-024-74760-3
  83. Gailis M. Quantifying Blue Carbon for the largest salt marsh in southern British Columbia. Masters: Simon Fraser University. 2020. P. 84.
  84. Ganthy F., Soissons L., Sauriau P.G., Verney R., Sottolichio A. Effects of short flexible seagrass Zostera noltei on flow, erosion and deposition processes determined using flume experiments // Sedimentology. 2015. V. 62. P. 997–1023. https://doi.org/10.1111/sed.12170
  85. Gedan K.B., Silliman B.R., Bertness M.D. Centuries of human-driven change in salt marsh ecosystems // Annual Rev. Marine Sci. 2009. V. 1. P. 117–141. https://doi.org/10.1146/annurev.marine.010908.163930
  86. Gedan K.B., Kirwan M.L., Wolanski E., Barbier E.B., Silliman B.R. The present and future role of coastal wetland vegetation in protecting shorelines: answering recent challenges to the paradigm // Climatic Change. 2011. V. 106. P. 7–29. https://doi.org/10.1007/s10584-010-0003-7
  87. Grabowski R.C., Droppo I.G., Wharton G. Erodibility of cohesive sediment: The importance of sediment properties // Earth-Sci. Rev. 2011. V. 105. P. 101–120. https://doi.org/10.1016/j.earscirev.2011.01.008
  88. Graversen A.E.L., Banta G.T., Masque P., Krause‐Jensen D. Carbon sequestration is not inhibited by livestock grazing in Danish salt marshes // Limnology and Oceanography. 2022. V. 67. P. S19–S35. https://doi.org/10.1002/lno. 12011
  89. Green A., Chadwick M.A., Jones P.J.S. Variability of UK seagrass sediment carbon: Implications for blue carbon estimates and marine conservation management // PLoS One. 2018. V. 13. P. e0204431. https://doi.org/10.1371/journal.pone.0204431
  90. Gu J., van Ardenne L.B., Chmura G.L. Invasive Phragmites increases blue carbon stock and soil volume in a St. Lawrence estuary marsh // J. Geophys. Res.: Biogeosciences. 2020. V. 125. P. e2019JG005473. https://doi.org/10.1029/2019JG005473
  91. Guidetti P., Lorenti M., Buia M.C., Mazzella L. Temporal dynamics and biomass partitioning in three Adriatic seagrass species: Posidonia oceanica, Cymodocea nodosa, Zostera marina // Marine Ecology. 2002. V. 23. P. 51–67. https://doi.org/10.1046/j.1439-0485.2002.02722.x
  92. Hansen J.C.R., Reidenbach M.A. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension // Marine Ecology Progress Series. 2012. V. 448. P. 271–287. https://doi.org/10.3354/meps09225
  93. Hansen K., Butzeck C., Eschenbach A., Gröngröft A., Jensen K., Pfeiffer E. M. Factors influencing the organic carbon pools in tidal marsh soils of the Elbe estuary (Germany) // J. Soils Sediments. 2016. V. 17. P. 47–60. https://doi.org/10.1007/s11368-016-1500-8
  94. Hassink J. The capacity of soils to preserve organic C and N by their association with clay and silt particles // Plant and Soil. 1997. V. 191. P. 77–87. https://doi.org/10.1023/A:1004213929699
  95. Hatton R.S., DeLaune R.D., Patrick Jr W.H. Sedimentation, accretion, and subsidence in marshes of Barataria Basin, Louisiana // Limnology and Oceanography. 1983. V. 28. P. 494–502. https://doi.org/10.4319/lo.1983.28.3.0494
  96. HELCOM. Climate Change in the Baltic Sea Area – HELCOM Thematic Assessment in 2007. Baltic Sea Environmental Proceedings. 2007. № 111.
  97. Hemminga M.A., Duarte C. M. Seagrass ecology. Cambridge University Press. 2000. 297 p.
  98. Hendriks I.E., Sintes T., Bouma T.J., Duarte C.M. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping // Marine Ecology Progress Series. 2008. V. 356. P. 163–173. https://doi.org/10.3354/meps07316
  99. Holland J.N., Cheng W., Crossley D.A. Herbivore-induced changes in plant carbon allocation: assessment of below-ground C fluxes using carbon-14 // Oecologia. 1996. V. 107. P. 87–94. https://doi.org/10.1007/BF00582238
  100. Howard J., Hoyt S., Isensee K., Telszewski M., Pidgeon E. Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrasses. Conservation International, Intergovernmental Oceanographic Commission of UNESCO. International Union for Conservation of Nature: Arlington, VA, USA. 2014. 180 p.
  101. Howard J., Sutton-Grier A., Herr D., Kleypas J., Landis E., Mcleod E., Simpson S. Clarifying the role of coastal and marine systems in climate mitigation // Frontiers Ecol. Environ. 2017. V. 15. P. 42–50. https://doi.org/10.1002/fee.1451
  102. Huckle J.M., Potter J.A., Marrs R. Influence of environmental factors on the growth and interactions between salt marsh plants: effects of salinity, sediment and waterlogging // J. Ecology. 2000. № 88. P. 492–505. https://doi.org/10.1046/j.1365-2745.2000.00464.x
  103. Hwan Bang J., Bae M., Ju Lee E. Plant distribution along an elevational gradient in a macrotidal salt marsh on the west coast of Korea // Aquatic Botany. 2019. V. 147. P. 52–60. https://doi.org/10.1016/j.aquabot.2018.03.005
  104. Infantes E., Hoeks S., Adams M. P., van der Heide T., van Katwijk M.M., Bouma T.J. Seagrass roots strongly reduce cliff erosion rates in sandy sediments // Marine Ecology Progress Series. 2022. V. 700. P. 1–12. https://doi.org/10.3354/meps14196
  105. Jankowska E., Michel L.N., Zaborska A., Włodarska‐Kowalczuk M. Sediment carbon sink in low‐density temperate eelgrass meadows (Baltic Sea) // J. Geophys. Res.: Biogeosciences. 2016. V. 121. P. 2918–2934. https://doi.org/10.1002/2016JG003424
  106. Jensen L.A., Schmidt L.B., Hollesen J., Elberling B. Accumulation of soil organic carbon linked to Holocene Sea level changes in west Greenland // Arctic, Antarctic, and Alpine Research. 2006. V. 38. P. 378–383. https://doi.org/10.1657/1523-0430(2006)38[378: AOSOCL]2.0.CO
  107. Kauer K., Köster T., Kõlli R. Chemical parameters of coastal grassland soils in Estonia // Agronomy Research. 2004. V. 2. P. 169–180.
  108. Kazhukalo G., Belova N., Overduin P., Ogorodov S., Bogatova D., Shilova O. Carbon emission from ice-rich permafrost bluffs: insights from coastal erosion and sediment redistribution estimations, Kharasavey, Kara Sea // J. Coastal Res. 2024. V. 113. P. 458–462. https://doi.org/10.2112/JCR-SI113-090.1
  109. Kelleway J.J., Saintilan N., Macreadie P.I., Ralph P.J. Sedimentary factors are key predictors of carbon storage in SE Australian Saltmarshes // Ecosystems. 2016. V. 19. P. 865–880. https://doi.org/10.1007/s10021-016-9972-3
  110. Kennedy H., Björk M. Seagrass meadows // The Management of Natural Coastal Carbon Sinks / Eds. Laffoley D., Grimsditch G.D. IUCN. Glang, Switzerland, 2009. P. 23–30.
  111. Kennedy H., Beggins J., Duarte C.M., Fourqurean J.W., Holmer M., Marbà N., Middelburg J.J. Seagrass sediments as a global carbon sink: Isotopic constraints // Global Biogeochem. Cycles. 2010. V. 24. https://doi.org/10.1029/2010GB003848
  112. Kettenring K.M., Mock K.E., Zaman B., McKee M. Life on the edge: reproductive mode and rate of invasive Phragmites australis patch expansion // Biological Invasions. 2016. V. 18. P. 2475–2495. https://doi.org/10.1007/s10530-016-1125-2
  113. Kindeberg T., Ørberg S.B., Röhr M.E., Holmer M., Krause-Jensen D. Sediment stocks of carbon, nitrogen, and phosphorus in Danish eelgrass meadows // Frontiers Marine Sci. 2018. V. 5. P. 474. https://doi.org/10.3389/fmars.2018.00474
  114. Koch E.W., Ackerman J.D., Verduin J., van Keulen M. Fluid dynamics in seagrass ecology from molecules to ecosystems // Seagrasses: Biology, Ecology and Conservation / Eds. Larkum A.W.D. et al. Dordrecht: Springer, 2006. P. 193–225. https://doi.org/10.1007/978-1-4020-2983-7_8
  115. Krause-Jensen D., Duarte C.M. Expansion of vegetated coastal ecosystems in the future Arctic // Frontiers Marine Sci. 2014. V. 1. P. 77. https://doi.org/10.3389/fmars.2014.00077
  116. Kristensen E., Holmer M. Decomposition of plant materials in marine sediment exposed to different electron acceptors (O2, NO3, and SO42−), with emphasis on substrate origin, degradation kinetics, and the role of bioturbation // Geochim. Cosmochim. Acta. 2001. V. 65. P. 419–433. https://doi.org/10.1016/S0016-7037(00)00532-9
  117. Kristensen E., Quintana C.O., Petersen S.G.G. The role of biogenic structures for greenhouse gas balance in vegetated intertidal wetlands // Cyril Marchand Carbon Mineralization in Coastal Wetlands / Eds. Xiaoguang Ouyang, et al. Elsevier, 2022. P. 233–267. https://doi.org/10.1016/B978-0-12-819220-7.00001-7
  118. Lavery P.S., Mateo M.Á., Serrano O., Rozaimi M. Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service // PloS One. 2013. V. 8. P. e73748. https://doi.org/10.1371/journal.pone.0073748
  119. Lee H., Schvartz R.S. Biological processes affecting the distribution of pollutants in marine sediments. 2. Biodesposition and Bioturbation // Contaminants and Sediments / Ed. Baker R.A. V. 2. Ann Arbor Sci. Pubs, Ann Arbor, 1980. V. 2. P. 555–606.
  120. Leiva‐Dueñas C., Graversen A.E.L., Banta G.T., Banta G.T., Hansen J.N., Kjærgaard Schrøter M.L., Masqué P. et al. Region‐specific drivers cause low organic carbon stocks and sequestration rates in the saltmarsh soils of southern Scandinavia // Limnology and Oceanography. 2024. V. 69. P. 290–308. https://doi.org/10.1002/lno. 12480
  121. Liao C.Z., Luo Y.Q., Fang C.M., Chen J.K., Li B. Litter pool sizes, decomposition, and nitrogen dynamics in Spartina alterniflora-invaded and native coastal marshlands of the Yangtze Estuary // Oecologia. 2008. V. 156. P. 589–600. https://doi.org/10.1007/s00442-008-1007-0
  122. Lima M.A.C., Ward R.D., Joyce C.B. Environmental drivers of sediment carbon storage in temperate seagrass meadows // Hydrobiologia. 2020. V. 847. P. 1773–1792. https://doi.org/10.1007/s10750-019-04153-5
  123. Lin A. Blue carbon dynamics within the temperate subtidal eelgrass (Zostera marina) meadows of Portage Inlet, British Columbia. Masters: Simon Fraser University. 2024. P. 37.
  124. Lovelock C.E., Fourqurean J.W., Morris J.T. Modeled CO2 emissions from coastal wetland transitions to other land uses: tidal marshes, mangrove forests, and seagrass beds // Frontiers Marine Sci. 2017. V. 4. P. 143. https://doi.org/10.3389/fmars.2017.00143
  125. Macreadie P.I., Hardy S.S.S. Response of seagrass 'blue carbon' stocks to increased water temperatures // Diversity. 2018. V. 10. P. 115. https://doi.org/10.3390/d10040115
  126. Magenheimer J.F., Moore T.R., Chmura G.L., Daoust R.J. Methane and carbon dioxide flux from a macrotidal salt marsh, Bay of Fundy, New Brunswick // Estuaries. 1996. V. 19. P. 139–145. https://doi.org/10.2307/1352658
  127. Marbà N., Krause-Jensen D., Masqué P., Duarte C.M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks // Scientific Reports. 2018. V. 8. P. 14024. https://doi.org/10.1038/s41598-018-32249-w.
  128. Mateo M., Cebrián J., Dunton K., Mutchler T. Carbon flux in seagrass ecosystems // Seagrasses: Biology, Ecology and Conservation / Eds. Larkum A.W.D. et al. Dordrecht: Springer, 2006. P. 159–192.
  129. Mateo M.A., Romero J., Perez M., Littler M.M., Littler D.S. Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica // Estuarine, Coastal Shelf Sci. 1997. V. 44. P. 103–110. https://doi.org/10.1006/ecss.1996.0116
  130. Mayer L.M. Surface area control of organic carbon accumulation in continental shelf sediments // Geochim. Cosmochim. Acta. 1994. V. 58. P. 1271–1284. https://doi.org/10.1016/0016-7037(94)90381-6
  131. Mazarrasa I., Samper-Villarreal J., Serrano O., Lavery P.S., Lovelock C.E., Marbà N., Cortés J. Habitat characteristics provide insights of carbon storage in seagrass meadows // Marine Poll. Bull. 2018. V. 134. P. 106–117. https://doi.org/10.1016/j.marpolbul.2018.01.059
  132. McKee K.L., Cahoon D.R., Feller I.C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation // Global Ecology and Biogeography. 2007. V. 16. P. 545–556. https://doi.org/10.1111/j.1466-8238.2007.00317.x
  133. Mcleod E., Chmura G.L., Bouillon S., Salm R., Bjork M., Duarte C.M., Lovelock C.E., Silliman B.R. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2 // Front. Ecol. Environ. 2011. V. 9. P. 552‒560. https://doi.org/10.1890/110004
  134. McRoy C.P. Eelgrass under Arctic winter ice // Nature. 1969. V. 224. № 5221. P. 818–819. https://doi.org/10.1038/224818a0
  135. McTigue N.D., Walker Q. A., Currin C.A. Refining estimates of greenhouse gas emissions from salt marsh "blue carbon" erosion and decomposition // Frontiers Marine Sci. 2021. V. 8. P. 661442. https://doi.org/10.3389/fmars.2021.661442
  136. Middelburg J.J., Herman P.M.J. Organic matter processing in tidal estuaries // Marine Chem. 2007. V. 106. P. 127–147. https://doi.org/10.1016/j.marchem.2006.02.007
  137. Morris J.T., Jensen A. The carbon balance of grazed and non‐grazed Spartina anglica saltmarshes at Skallingen, Denmark // J. Ecology. 1998. V. 86. P. 229–242. https://doi.org/10.1046/j.1365-2745.1998.00251.x
  138. Mueller P., Ladiges N., Jack A., Schmiedl G., Kutzbach L., Jensen K., Nolte S. Assessing the long‐term carbon‐sequestration potential of the semi‐natural salt marshes in the European Wadden Sea // Ecosphere. 2019. V. 10. P. e02556. https://doi.org/10.1002/ecs2.2556
  139. Nellemann C., Corcoran E. Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. UNEP/GRID Arendal, 2009. 75 p.
  140. Nepf H.M., Vivoni E.R. Flow structure in depth‐limited, vegetated flow // J. Geophys. Res.: Oceans. 2000. V. 105. P. 28547–28557. https://doi.org/10.1029/2000JC900145
  141. Neubauer S.C. Contributions of mineral and organic components to tidal freshwater marsh accretion // Estuarine, Coastal Shelf Sci. 2008. V. 78. P. 78–88. https://doi.org/10.1016/j.ecss.2007.11.011
  142. Oades J.M. The retention of organic matter in soils // Biogeochemistry. 1998. V. 5. P. 35–70. https://doi.org/10.1007/BF02180317
  143. Ogston A.S., Field M.E. Predictions of turbidity due to enhanced sediment resuspension resulting from sea-level rise on a fringing coral reef: evidence from Molokai, Hawaii // J. Coastal Res. 2010. V. 26. P. 1027–1037. https://doi.org/10.2112/JCOASTRES-D-09-00064.1
  144. Olesen B., Krause-Jensen D., Marbà N., Christensen P.B. Eelgrass Zostera marina in subarctic Greenland: dense meadows with slow biomass turnover in cold waters // Marine Ecology Progress Series. 2015. V. 518. P. 107–121. https://doi.org/10.3354/meps11087
  145. Olff H., Bakker J.P., Fresco L.F.M. The effect of fluctuations in tidal inundation frequency on a salt-marsh vegetation // Vegetatio. 1988. V. 78. P. 13–19. https://doi.org/10.1007/BF00045634
  146. Omengo F.O., Geeraert N., Bouillon S., Govers G. Deposition and fate of organic carbon in floodplains along a tropical semiarid lowland river (Tana River, Kenya) // J. Geophysical Research: Biogeosciences. 2016. V. 121. P. 1131–1143. https://doi.org/10.1002/2015JG003288
  147. Orson R.A., Simpson R.L., Good R.E. Rates of sediment accumulation in a tidal freshwater marsh // J. Sedimentary Research. 1990. V. 60. P. 859–869. https://doi.org/10.1306/D4267631-2B26-11D7-8648000102C1865D
  148. Ouyang X., Lee S.Y. Updated estimates of carbon accumulation rates in coastal marsh sediments // Biogeosciences. 2014. V. 11. P. 5057–5071. https://doi.org/10.5194/bg-11-5057-2014
  149. Pedersen M.Ø., Serrano O., Mateo M.Á., Holmer M. Temperature effects on decomposition of a Posidonia oceanica mat // Aquatic microbial ecology. 2011. V. P. 169–182. https://doi.org/10.5194/bg-11-5057-2014
  150. Pennings S.C., Bertness M.D. Salt marsh communities // Marine Community Ecology / Eds. Bertness M.D. et al. Sinauer Associates, 2001. V. 11. P. 289–316.
  151. Pergent G., Romero J., Pergent-Martini C., Mateo M.A., Boudouresque C.F. Primary production, stocks and fluxes in the Mediterranean seagrass Posidonia oceanica // Marine Ecology Progress Series. 1994. P. 139–146. https://doi.org/10.3354/meps106139
  152. Poffenbarger H.J., Needelman B.A., Megonigal J.P. Salinity influence on methane emissions from tidal marshes // Wetlands. 2011. V. 31. P. 831–842. https://doi.org/10.1007/s13157-011-0197-0
  153. Polyakov V., Lupachev A., Gubin S., Abakumov E. Soil organic matter of tidal marsh permafrost-affected soils of Kolyma lowland // Agronomy. 2023. V. 13. P. 48. https://doi.org/10.3390/agronomy13010048
  154. Poppe K.L., Rybczyk J.M. Carbon sequestration in a pacific northwest eelgrass (Zostera marina) meadow // Northwest Sci. 2018. V. 92. P. 80–91. https://doi.org/10.3955/046.092.0202
  155. Postlethwaite V.R., McGowan A.E., Kohfeld K.E., Robinson C.L., Pellatt M.G. Low blue carbon storage in eelgrass (Zostera marina) meadows on the Pacific Coast of Canada // PLoS One. 2018. V. 13. P. e0198348. https://doi.org/10.1371/journal.pone.0198348
  156. Potouroglou M., Whitlock D., Milatovic L., MacKinnon G., Kennedy H., Diele K., Huxham M. The sediment carbon stocks of intertidal seagrass meadows in Scotland // Estuarine, Coastal Shelf Sci. 2021. V. 258. P. 107442. https://doi.org/10.1016/j.ecss.2021.107442
  157. Prentice C., Hessing‐Lewis M., Sanders‐Smith R., Salomon A.K. Reduced water motion enhances organic carbon stocks in temperate eelgrass meadows // Limnology and Oceanography. 2019. V. 64. P. 2389–2404. https://doi.org/10.1002/lno. 11191
  158. Rachold V., Eicken H., Gordeev V.V., Grigoriev M.N., Hubberten H.W., Lisitzin A.P., Schirrmeister L. Modern terrigenous organic carbon input to the Arctic Ocean // The organic carbon cycle in the Arctic Ocean / Eds. Stein R., MacDonald R.W. Berlin: Springer, 2004. P. 33–55.
  159. Reader J., Craft C. Comparison of wetland structure and function on grazed and ungrazed salt marshes // J. Elisha Mitchell Scientif. Soc. 1999. P. 236–249. https://www.jstor.org/stable/24335439
  160. Reusch T.B., Boström C., Stam W.T., Olsen J.L. An ancient eelgrass clone in the Baltic // Marine Ecology Progress Series. 1999. V. 183. P. 301–304. https://hdl.handle.net/11858/00-001M-0000-000F-E090-6
  161. Ricart A.M., Pérez M., Romero J. Landscape configuration modulates carbon storage in seagrass sediments // Estuarine, Coastal Shelf Sci. 2017. V. 185. P. 69–76. https://doi.org/10.1016/j.ecss.2016.12.011
  162. Röhr M.E., Boström C., Canal-Vergés P., Holmer M. Blue carbon stocks in Baltic Sea eelgrass (Zostera marina) meadows // Biogeosciences. 2016. V. 13. № 22. P. 6139–6153. https://doi.org/10.5194/bg-13-6139-2016
  163. Röhr M.E., Holmer M., Baum J.K., Björk M., Boyer K., Chin D., Chalifour L. et al. Blue carbon storage capacity of temperate eelgrass (Zostera marina) meadows // Global Biogeochem. Cycles. 2018. V. 32. P. 1457–1475. https://doi.org/10.1029/2018GB005941
  164. Romero J., Pergent G., Pergent‐Martini C., Mateo M.A., Regnier C. The detritic compartment in a Posidonia oceanica meadow: litter features, decomposition rates, and mineral stocks // Marine Ecology. 1992. V. 13. P. 69–83. https://doi.org/10.1111/j.1439-0485.1992.tb00341.x
  165. Roner M., D’Alpaos A., Ghinassi M., Marani M., Silvestri S., Franceschinis E., Realdon N. Spatial variation of salt-marsh organic and inorganic deposition and organic carbon accumulation: Inferences from the Venice lagoon, Italy // Adv. Water Resources. 2016. V. 93. P. 276–287. https://doi.org/10.1016/j.advwatres.2015.11.011
  166. Saintilan N., Rogers K., Mazumder D., Woodroffe C. Allochthonous and autochthonous contributions to carbon accumulation and carbon store in southeastern Australian coastal wetlands // Estuarine, Coastal Shelf Sci. 2013. V. 128. P. 84–92. https://doi.org/10.1016/j.ecss.2013.05.010
  167. Salo T., Pedersen M.F., Boström C. Population specific salinity tolerance in eelgrass (Zostera marina) // J. Experimental Marine Biol. Ecol. 2014. V. 461. P. 425–429. https://doi.org/10.1016/j.jembe.2014.09.010
  168. Samper‐Villarreal J., Lovelock C.E., Saunders M.I., Roelfsema C., Mumby P.J. Organic carbon in seagrass sediments is influenced by seagrass canopy complexity, turbidity, wave height, and water depth // Limnology and Oceanography. 2016. V. 61. P. 938–952. https://doi.org/10.1002/lno. 10262
  169. Sayre R., Butler K., Van Graafeiland K., Breyer S., Wright D., Frye C., Muller-Karger F.E. A global ecological classification of coastal segment units // Oceanography. 2021. V. 34. P. 120–129. https://doi.org/10.5670/oceanog.2021.219
  170. Serrano O., Lavery P.S., Duarte C.M., Kendrick G.A., Calafat A., York P., Macreadie P. Can mud (silt and clay) concentration be used to predict soil organic carbon content within seagrass ecosystems? // Biogeosciences Discussions. 2016. V. 2016. P. 1–24. https://doi.org/10.5194/bg-13-4915-2016
  171. Serrano O., Lavery P.S., Rozaimi M., Mateo M.Á. Influence of water depth on the carbon sequestration capacity of seagrasses // Global Biogeochem. Cycles. 2014. V. 28. P. 950–961. https://doi.org/10.1002/ 2014GB004872
  172. Short F., Carruthers T., Dennison W., Waycott M. Global seagrass distribution and diversity: a bioregional model // J. Experimental Marine Biol. Ecol. 2007. V. 350. P. 3–20. https://doi.org/10.1016/j.jembe.2007.06.012
  173. Shulkin V., Zharikov V., Lebedev A., Bazarov K. Assessment of carbon stock in the Zostera marina Linnaeus, 1753 ecosystem on sandy sediments of the Srednyaya Bight (Peter the Great Bay, the Sea of Japan) based on field observations // Marine Biological J. 2024. V. 9. P. 98–114. https://doi.org/10.21072/mbj.2024.09.2.07
  174. Smeaton C., Ladd C.J., Miller L.C., McMahon L., Garrett E., Barlow N.L.M., Gehrels W.R., Skov M.W., Austin W.E.N. Organic carbon stocks of Great British saltmarshes // Frontiers Marine Sci. 2023. V. 10. P. 1229486. https://doi.org/10.3389/fmars.2023.1229486
  175. Streletskaya I.D., Vasiliev A.A., Vanstein B.G. Erosion of sediment and organic carbon from the Kara Sea coast // Arctic, Antarctic, and Alpine Research. 2009. V. 41. P. 79–87. https://doi.org/10.1657/1523-0430-41.1.79
  176. Tan L.S., Ge Z.M., Fei B.L., Xie L.N., Li Y.L., Li S.H., Ysebaert T. The roles of vegetation, tide and sediment in the variability of carbon in the salt marsh dominated tidal creeks // Estuarine, Coastal Shelf Sci. 2020. V. 239. P. 106752. https://doi.org/10.1016/j.ecss.2020.106752
  177. Tanaya T., Watanabe K., Yamamoto S., Hongo C., Kayanne H., Kuwae T. Contributions of the direct supply of belowground seagrass detritus and trapping of suspended organic matter to the sedimentary organic carbon stock in seagrass meadows // Biogeosciences. 2018. V. 15. P. 4033–4045. https://doi.org/10.5194/bg-15-4033-2018
  178. Taylor B. Saltmarsh restoration and blue carbon dynamics in a Scottish estuary. Thesis: University of St Andrews. 2019. 202 p. https://doi.org/10.17630/10023-20891
  179. Temmerman S., Govers G., Wartel S., Meire P. Spatial and temporal factors controlling short‐term sedimentation in a salt and freshwater tidal marsh, Scheldt estuary, Belgium, SW Netherlands // Earth Surface Processes and Landforms: J. British Geomorphological Research Group. 2003. V. 28. P. 739–755. https://doi.org/10.1002/esp. 495
  180. Tiner R.L. A field guide to coastal wetland plants of the northeastern United States. Amherst: University of Massachusetts Press, 1987. V. 39, 404 p.
  181. Tripathee R., Schäfer K.V.R. Above-and belowground biomass allocation in four dominant salt marsh species of the eastern United States // Wetlands. 2015. V. 35. P. 21–30. https://doi.org/10.1007/s13157-014-0589-z
  182. Tseits M.A, Dobrynin D.V. Classification of marsh soils in Russia // Eurasian Soil Sci. 2005. V. 38. P. 44–48.
  183. Tseits M.A., Marechek M.S. The formation of soil cover patterns on tidal marshes of the Arctic of Russia // Moscow University Soil Science Bulletin. 2021. V. 76. P. 273–282. https://doi.org/10.3103/s0147687421050057
  184. Unsworth R.K.F., Cullen-Unsworth L.C., Jones B.L.H., Lilley R.J. The planetary role of seagrass conservation // Science. 2022. V. 377. P. 609–613. https://doi.org/10.1126/science.abq6923
  185. van Ardenne L.B., Jolicouer S., Bérubé D., Burdick D., Chmura G.L. The importance of geomorphic context for estimating the carbon stock of salt marshes // Geoderma. 2018. V. 330. P. 264–275. https://doi.org/10.1016/j.geoderma.2018.06.003
  186. Van de Broek M., Temmerman S., Merckx R., Govers G. The importance of an estuarine salinity gradient on soil organic carbon stocks of tidal marshes // Biogeosciences. 2016. V. 13. P. 6611–24. https://doi.org/10.5194/bg-2016-285
  187. Van de Broek M., Vandendriessche C., Poppelmonde D., Merckx R., Temmerman S., Govers G. Long‐term organic carbon sequestration in tidal marsh sediments is dominated by old‐aged allochthonous inputs in a macrotidal estuary // Global Change Biol. 2018. V. 24. P. 2498–2512. https://doi.org/10.1111/gcb.14089
  188. van Ree R. The surface sediment carbon content of a North Norfolk saltmarsh // The Plymouth Student Scientist. 2019. V. 12. P. 50–62. https://doi.org/10.24382/7r5d-ft40
  189. Van Wijnen H.J., Bakker J.P. Long-term surface elevation change in salt marshes: a prediction of marsh response to future sea-level rise // Estuarine, Coastal Shelf Sci. 2001. V. 52. P. 381–390. https://doi.org/10.1006/ecss.2000.0744
  190. Vestergaard P. Strandenge-en beskyttet naturtype. G.E.C. Gads Forlag, København. 2000.
  191. Vonk J., Sánchez-García L., van Dongen B., Alling V., Kosmach D., Charkin A., Semiletov I.P. et al. Activation of old carbon by erosion of coastal and subsea permafrost in Arctic Siberia // Nature. 2012. V. 489. P. 137–140. https://doi.org/10.1038/nature11392
  192. Watanabe K., Kuwae T. How organic carbon derived from multiple sources contributes to carbon sequestration processes in a shallow coastal system? // Global Change Biology. 2015. V. 21. P. 2612–2623.
  193. Whitlock D.S. Understanding the drivers of carbon sequestration in Scottish seagrass // Thesis: Edinburgh Napier Universit. 2021. P. 267. https://doi.org/10.17869/ENU.2022.2967545
  194. Widdows J., Pope N.D., Brinsley M.D., Asmus H., Asmus R.M. Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension // Marine Ecology Progress Series. 2008. V. 358. P. 125–136. https://doi.org/10.3354/meps07338
  195. Więski K., Guo H., Craft C.B., Pennings S.C. Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia coast // Estuaries and Coasts. 2010. V. 33. P. 161–169. https://doi.org/10.1007/s12237-009-9230-4
  196. Williams A.K., Rosenheim B.E. What happens to soil organic carbon as coastal marsh ecosystems change in response to increasing salinity? An exploration using ramped pyrolysis // Geochemistry, Geophysics, Geosystems. 2015. V. 16. P. 2322–2335. https://doi.org/10.1002/2015GC005839
  197. Williams K. Carbon storage in tidal marsh sediments in the Bay of Fundy: the role of vegetation and depth. Bachelor: Saint Mary's University. 2021. 39 p.
  198. Williamson P., Gattuso J.P. Carbon removal using coastal blue carbon ecosystems is uncertain and unreliable, with questionable climatic cost-effectiveness // Frontiers in Climate. 2022. V. 4. P. 853666. https://doi.org/10.3389/fclim.2022.853666
  199. Windham L.M., Weis J.S., Weis P. Metal dynamics of plant litter of Spartina alterniflora and Phragmites australis in Metal‐Contaminated salt marshes. Part 1: Patterns of decomposition and metal uptake // Environ. Toxicol. Chem.: Int. J. 2004. V. 23. P. 1520–1528. https://doi.org/10.1897/03-284
  200. Yando E.S., Jones S.F., James W.R., Colombano D.D., Montemayor D.I., Nolte S., Raw J.L. et al. An integrative salt marsh conceptual framework for global comparisons // Limnol. Oceanography Lett. 2023. V. 8. P. 830–849. https://doi.org/10.1002/lol2.10346
  201. York P.H., Gruber R.K., Hill R., Ralph P.J., Booth D.J., Macreadie P.I. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature // PloS One. 2013. V. 8. P. e76377. https://doi.org/10.1371/journal.pone.0076377
  202. Yu O. Soil carbon in a grazed and ungrazed tidal marsh in the St. Lawrence Estuary. Masters: McGill University, 2008. P. 60.
  203. Yu O.T., Chmura G.L. Soil carbon may be maintained under grazing in a St Lawrence Estuary tidal marsh // Environ. Conserv. 2009. V. 36. P. 312–320. https://doi.org/10.1017/S0376892910000184
  204. Zedler J.B., Winfield T., Williams P. Salt marsh productivity with natural and altered tidal circulation // Oecologia. 1980. V. 44. P. 236–240. https://doi.org/10.1007/BF00572685
  205. Zubrzycki S., Kutzbach L., Grosse G., Desyatkin A., Pfeiffer E. Organic carbon and total nitrogen stocks in soils of the Lena River Delta // Biogeosciences. 2013. V. 10. P. 3507–3524. https://doi.org/10.5194/bg-10-3507-2013

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».