Postpyrogenic Changes in the Properties of Organic Matter in Cryosols of Western Siberia forest-tundra

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Organic matter of cryogenic soils of the Western Siberia forest-tundra is concentrated mainly in the upper soil horizons. Fires are a powerful factor in the transformation of the soil and plant cover in northern ecosystems, often leading to an increase in the heat flow deep into the soil and can cause accelerated mineralization of plant residues of organic horizons. The aim of the study was to assess the adsorption capacity of mineral horizons of a Reductaquic Turbic Cryosols thixotropic 28 years after the wildfire and to identify parameters that influence this capacity of the soil. Measurements of the soil organic carbon and total nitrogen contents were carried out using the ECS 4024 and METEK-700 express analyzers; soil texture was measured using the laser diffraction method on the Malvern Mastersizer 3000 analyzer; and the relationships between film water potentials and contents was measured using the WP4-T dewpoint potentiometer. The studied soils did not differ in texture, which allowed us to link changes in the adsorption capacity of the soil with the changes occurring in their organic matter. The results of the studies have shown that 28 years after the wildfire, the studied soil differed significantly from its natural analogue in the total organic carbon content. The average total organic carbon content in the 0–5 cm layer of natural soil was 1.11%, and in the 5–30 cm layer – 1.07%. In the soil of the wildfire territory, the content of total organic carbon in both layers was significantly (p < 0.05) lower and amounted, on average, to 0.73 and 0.71%, respectively. The highest mineral soil layer, which is in direct contact with the overlying organogenic horizon, is characterized by a statistically significant (p < 0.05) decrease in the content of particulate organic matter and a statistically significant increase in the adsorption capacity of soils in the range of the film moisture. In terms of its adsorption properties, the upper mineral layer (0–5 cm) of the wildfire territory soil is closer to the underlying (5–30 cm) mineral layer and is significantly (p < 0.05) different from the similar layer (0–5 cm) of the natural soil.

About the authors

N. P Buchkina

Institute of Ecological and Agricultural Biology, University of Tyumen; Agrophysical Research Institute

Email: buchkina@agrophys.ru
ORCID iD: 0000-0003-3810-3753
Tyumen, Russia; St. Petersburg, Russia

A. A Yurtaev

Institute of Ecological and Agricultural Biology, University of Tyumen

ORCID iD: 0000-0003-1780-2598
Tyumen, Russia

O. S Shvartseva

Institute of Ecological and Agricultural Biology, University of Tyumen

ORCID iD: 0000-0002-9133-5468
Tyumen, Russia

D. P Mukhina

Institute of Ecological and Agricultural Biology, University of Tyumen; Agrophysical Research Institute

ORCID iD: 0000-0003-1654-7000
Tyumen, Russia; St. Petersburg, Russia

E. V Balashov

Agrophysical Research Institute

ORCID iD: 0000-0002-4513-1392
St. Petersburg, Russia

References

  1. Aaltonen H., Köster K., Köster E., Berninger F., Zhou X., Karhu K., Biasi C. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality // Biogeochemistry. 2019. V. 143. P. 257–274. https://doi.org//10.1007/s10533-019-00560-x
  2. Akin I.D., Akinleye T.O. Water vapor sorption behavior of wildfire-burnt soil // J. Geotech. Geoenv. Eng. 2021. V. 147. P. 04021115. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002648
  3. Balashov E., Khomyakov Y., Sushko S., Rizhiya E. Content of adsorbed film water and density of oxygen-containing functional groups on surface of ageing biochar in sandy spodosol // Acta Hort. Regiotect. 2022. V. 25. P. 115–120. https://doi.org/10.2478/ahr-2022-0015
  4. Certini G. Fire as a soil-forming factor // Ambio. 2014. V. 43. P. 191–195. https://doi.org/10.1007/s13280-013-0418-2
  5. Chen C., Jiang Y., Sun B., Zhou H., Hallett P.D. Organic manure and lime change water vapour sorption of a red soil by altering water repellency and specific surface area // Eur. J. Soil Sci. 2022. V. 73. P. e13223. https://doi.org/10.1111/ejss.13223
  6. Cole K.T., Hill N., Young K., Jenkins T., Hancock D., Schroeder P.A., Thompson A. Substrate quality influences organic matter accumulation in the soil silt and clay fraction // Soil. Biol. Biochem. 2016. V. 103. P. 138–148. https://doi.org/10.1016/j.soilbio.2016.08.014
  7. Do D.D., Do H.D. A model for water adsorption in activated carbon // Carbon. 2000. V. 38. P. 767–773. https://doi.org/10.1016/S0008-6223(99)00159-1
  8. Glaser B., Lehmann J. Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review // Biol. Fert. Soils. 2002. V. 35. P. 219–230. https://doi.org/10.1007/s00374-002-0466-4
  9. IUSS Working Group WRB. World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. International Union of Soil Sciences (IUSS): Vienna. Austria. 2022. 236 pp.
  10. Jafarov E.E., Romanovsky V.E., Genet H., McGuire A.D., Marchenko S.S. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate // Envir. Res. Lett. 2013. V. 8. P. 035030. https://doi.org/10.1088/1748-9326/8/3/035030
  11. Jauss V., Johnson M., Krull E., Daub M., Lehmann J. Pyrogenic carbon controls across a soil catena in the Pacific Northwest // Catena. 2015. V. 124. P. 53–59. https://doi.org/10.1016/j.catena.2014.09.001
  12. Jha P., Hati K.M., Dalal R.C., Dang Y.P., Kopittke P.M., Menzies N.W. Soil carbon and nitrogen dynamics in a Vertisol following 50 years of no-tillage, crop stubble retention and nitrogen fertilization // Geod. 2020. V. 358. P. 113996. https://doi.org/10.1016/j.geoderma.2019.113996
  13. Jones A., Stolbovoy V., Tarnocai C., Broll G., Spaargaren O., Montanarella L. (Eds.) Soil Atlas of the Northern Circumpolar Region. European Commission. Luxembourg: Publications Office of the European Union, 2010. 144 p.
  14. Heim R.J., Yurtaev A., Bucharova A., Heim W., Kutskir V., Knorr K.-H., Lampei C., Pechkin A., Schilling D., Sulkarnaev F., Hözel N. Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks // Biogeosci. 2022. V. 19. P. 2729–2740. https://doi.org/10.5194/bg-19-2729-2022
  15. Kettler T.A., Doran J.W., Gilbert T.L. Simplified method for soil particle-size determination to accompany soil-quality analyses // Soil Sci. Soc. Am. J. 2001. V. 65. P. 849–852. https://doi.org/10.2136/sssaj2001.653849x
  16. Khorshidi M., Lu N. Determination of cation exchange capacity from soil water retention curve // J. Engin. Mech. 2017. V. 143. P. 04017023. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001220
  17. Li X., Sun L., Han Y. Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review // Permafr. and Periglac. Proc. 2024. V. 35. P. 493–503. https://doi.org/10.1002/ppp.2247
  18. Lupachev A., Abakumov E., Gubin S. The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in cryosols of the Kolyma Lowland (North Yakutia, Russia) // Geosciences. 2017. V. 7. P. 24. https://doi.org/10.3390/geosciences7020024
  19. Nguyen V.T., Horikawa T., Do D.D., Nicholson D. Water as a potential molecular probe for functional groups on carbon surfaces // Carbon. 2014. V. 67. P. 72–78. https://doi.org/10.1016/j.carbon.2013.09.057
  20. O’Donnell J.A., Harden J.W., McGuire A.D., Kanevskiy M.Z., Jorgenson M.T., Xu X. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss // Glob. Chang. Biol. 2011. V. 17. P. 1461–1474. https://doi.org/10.1111/j.1365-2486.2010.02358.x
  21. Prater I., Zubrzycki S., Buegger F., Zoor-Füllgraff L.C., Angst G., Dannenmann M., Mueller C.W. From fibrous plant residues to mineral-associated organic carbon—the fate of organic matter in Arctic permafrost soils // Biogeosciences. 2020. V. 17. P. 3367–3383. https://doi.org/10.5194/bg-17-3367-2020
  22. Singh B., Fang Y., Cowie B.C., Thomsen L. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars // Org. Geochem. 2014. V. 77. P. 1–10. https://doi.org/10.1016/j.orggeochem.2014.09.006
  23. Son X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Hu K. Effect of soil organic matter on sorption of water vapor and associated hysteresis // Soil Sci. Soc. Am. J. 2023. V. 87. P. 1249–1262. https://doi.org//10.1002/saj2.20577
  24. Song X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Hu K. Effect of soil organic matter on sorption of water vapor and associated hysteresis // Soil Sci. Soc. Am J. 2023. V. 87. P. 1249–1262. https://doi.org//10.1002/saj2.20577
  25. Song X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Ren T. Cation exchange capacity and soil pore system play the key role in water vapour sorption // Geod. 2022. V. 424. P. 116017. https://doi.org//10.1016/j.geoderma.2022.116017
  26. Weintraub M.N., Schimel J.P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils // Ecosyst. 2003. V. 6. P. 129–143. https://doi.org//10.1007/s10021-002-0124-6
  27. Yurtaev A., Moskovchenko D., Sedov S., Sharapov D., Shvartseva O. The impact of fires on the fractional composition of iron and carbon dynamics in the cryogenic soils of the Forest–Tundra of Western Siberia under changing climate conditions // Soil Systems. 2025. V. 9. P. 15. https://doi.org//10.3390/solisystems9010015

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».