Postpyrogenic Changes in the Properties of Organic Matter in Cryosols of Western Siberia forest-tundra
- Authors: Buchkina N.P1,2, Yurtaev A.A1, Shvartseva O.S1, Mukhina D.P1,2, Balashov E.V2
-
Affiliations:
- Institute of Ecological and Agricultural Biology, University of Tyumen
- Agrophysical Research Institute
- Issue: No 12 (2025)
- Pages: 1878-1890
- Section: SOILS OF THE POLAR REGIONS
- URL: https://journals.rcsi.science/0032-180X/article/view/356179
- DOI: https://doi.org/10.7868/S3034561825120159
- ID: 356179
Cite item
Abstract
Keywords
About the authors
N. P Buchkina
Institute of Ecological and Agricultural Biology, University of Tyumen; Agrophysical Research Institute
Email: buchkina@agrophys.ru
ORCID iD: 0000-0003-3810-3753
Tyumen, Russia; St. Petersburg, Russia
A. A Yurtaev
Institute of Ecological and Agricultural Biology, University of Tyumen
ORCID iD: 0000-0003-1780-2598
Tyumen, Russia
O. S Shvartseva
Institute of Ecological and Agricultural Biology, University of Tyumen
ORCID iD: 0000-0002-9133-5468
Tyumen, Russia
D. P Mukhina
Institute of Ecological and Agricultural Biology, University of Tyumen; Agrophysical Research Institute
ORCID iD: 0000-0003-1654-7000
Tyumen, Russia; St. Petersburg, Russia
E. V Balashov
Agrophysical Research Institute
ORCID iD: 0000-0002-4513-1392
St. Petersburg, Russia
References
- Aaltonen H., Köster K., Köster E., Berninger F., Zhou X., Karhu K., Biasi C. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality // Biogeochemistry. 2019. V. 143. P. 257–274. https://doi.org//10.1007/s10533-019-00560-x
- Akin I.D., Akinleye T.O. Water vapor sorption behavior of wildfire-burnt soil // J. Geotech. Geoenv. Eng. 2021. V. 147. P. 04021115. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002648
- Balashov E., Khomyakov Y., Sushko S., Rizhiya E. Content of adsorbed film water and density of oxygen-containing functional groups on surface of ageing biochar in sandy spodosol // Acta Hort. Regiotect. 2022. V. 25. P. 115–120. https://doi.org/10.2478/ahr-2022-0015
- Certini G. Fire as a soil-forming factor // Ambio. 2014. V. 43. P. 191–195. https://doi.org/10.1007/s13280-013-0418-2
- Chen C., Jiang Y., Sun B., Zhou H., Hallett P.D. Organic manure and lime change water vapour sorption of a red soil by altering water repellency and specific surface area // Eur. J. Soil Sci. 2022. V. 73. P. e13223. https://doi.org/10.1111/ejss.13223
- Cole K.T., Hill N., Young K., Jenkins T., Hancock D., Schroeder P.A., Thompson A. Substrate quality influences organic matter accumulation in the soil silt and clay fraction // Soil. Biol. Biochem. 2016. V. 103. P. 138–148. https://doi.org/10.1016/j.soilbio.2016.08.014
- Do D.D., Do H.D. A model for water adsorption in activated carbon // Carbon. 2000. V. 38. P. 767–773. https://doi.org/10.1016/S0008-6223(99)00159-1
- Glaser B., Lehmann J. Zech W. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal—a review // Biol. Fert. Soils. 2002. V. 35. P. 219–230. https://doi.org/10.1007/s00374-002-0466-4
- IUSS Working Group WRB. World Reference Base for Soil Resources: International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. International Union of Soil Sciences (IUSS): Vienna. Austria. 2022. 236 pp.
- Jafarov E.E., Romanovsky V.E., Genet H., McGuire A.D., Marchenko S.S. The effects of fire on the thermal stability of permafrost in lowland and upland black spruce forests of interior Alaska in a changing climate // Envir. Res. Lett. 2013. V. 8. P. 035030. https://doi.org/10.1088/1748-9326/8/3/035030
- Jauss V., Johnson M., Krull E., Daub M., Lehmann J. Pyrogenic carbon controls across a soil catena in the Pacific Northwest // Catena. 2015. V. 124. P. 53–59. https://doi.org/10.1016/j.catena.2014.09.001
- Jha P., Hati K.M., Dalal R.C., Dang Y.P., Kopittke P.M., Menzies N.W. Soil carbon and nitrogen dynamics in a Vertisol following 50 years of no-tillage, crop stubble retention and nitrogen fertilization // Geod. 2020. V. 358. P. 113996. https://doi.org/10.1016/j.geoderma.2019.113996
- Jones A., Stolbovoy V., Tarnocai C., Broll G., Spaargaren O., Montanarella L. (Eds.) Soil Atlas of the Northern Circumpolar Region. European Commission. Luxembourg: Publications Office of the European Union, 2010. 144 p.
- Heim R.J., Yurtaev A., Bucharova A., Heim W., Kutskir V., Knorr K.-H., Lampei C., Pechkin A., Schilling D., Sulkarnaev F., Hözel N. Fire in lichen-rich subarctic tundra changes carbon and nitrogen cycling between ecosystem compartments but has minor effects on stocks // Biogeosci. 2022. V. 19. P. 2729–2740. https://doi.org/10.5194/bg-19-2729-2022
- Kettler T.A., Doran J.W., Gilbert T.L. Simplified method for soil particle-size determination to accompany soil-quality analyses // Soil Sci. Soc. Am. J. 2001. V. 65. P. 849–852. https://doi.org/10.2136/sssaj2001.653849x
- Khorshidi M., Lu N. Determination of cation exchange capacity from soil water retention curve // J. Engin. Mech. 2017. V. 143. P. 04017023. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001220
- Li X., Sun L., Han Y. Effects of Wildfires on Soil Organic Carbon in Boreal Permafrost Regions: A Review // Permafr. and Periglac. Proc. 2024. V. 35. P. 493–503. https://doi.org/10.1002/ppp.2247
- Lupachev A., Abakumov E., Gubin S. The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in cryosols of the Kolyma Lowland (North Yakutia, Russia) // Geosciences. 2017. V. 7. P. 24. https://doi.org/10.3390/geosciences7020024
- Nguyen V.T., Horikawa T., Do D.D., Nicholson D. Water as a potential molecular probe for functional groups on carbon surfaces // Carbon. 2014. V. 67. P. 72–78. https://doi.org/10.1016/j.carbon.2013.09.057
- O’Donnell J.A., Harden J.W., McGuire A.D., Kanevskiy M.Z., Jorgenson M.T., Xu X. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: Implications for post-thaw carbon loss // Glob. Chang. Biol. 2011. V. 17. P. 1461–1474. https://doi.org/10.1111/j.1365-2486.2010.02358.x
- Prater I., Zubrzycki S., Buegger F., Zoor-Füllgraff L.C., Angst G., Dannenmann M., Mueller C.W. From fibrous plant residues to mineral-associated organic carbon—the fate of organic matter in Arctic permafrost soils // Biogeosciences. 2020. V. 17. P. 3367–3383. https://doi.org/10.5194/bg-17-3367-2020
- Singh B., Fang Y., Cowie B.C., Thomsen L. NEXAFS and XPS characterisation of carbon functional groups of fresh and aged biochars // Org. Geochem. 2014. V. 77. P. 1–10. https://doi.org/10.1016/j.orggeochem.2014.09.006
- Son X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Hu K. Effect of soil organic matter on sorption of water vapor and associated hysteresis // Soil Sci. Soc. Am. J. 2023. V. 87. P. 1249–1262. https://doi.org//10.1002/saj2.20577
- Song X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Hu K. Effect of soil organic matter on sorption of water vapor and associated hysteresis // Soil Sci. Soc. Am J. 2023. V. 87. P. 1249–1262. https://doi.org//10.1002/saj2.20577
- Song X., Chen C., Arthur E., Tuller M., Zhou H., Shang J., Ren T. Cation exchange capacity and soil pore system play the key role in water vapour sorption // Geod. 2022. V. 424. P. 116017. https://doi.org//10.1016/j.geoderma.2022.116017
- Weintraub M.N., Schimel J.P. Interactions between carbon and nitrogen mineralization and soil organic matter chemistry in arctic tundra soils // Ecosyst. 2003. V. 6. P. 129–143. https://doi.org//10.1007/s10021-002-0124-6
- Yurtaev A., Moskovchenko D., Sedov S., Sharapov D., Shvartseva O. The impact of fires on the fractional composition of iron and carbon dynamics in the cryogenic soils of the Forest–Tundra of Western Siberia under changing climate conditions // Soil Systems. 2025. V. 9. P. 15. https://doi.org//10.3390/solisystems9010015
Supplementary files

