Potentially Toxic Elements in Soils of Cities in the Oil and Gas Region of Northern Western Siberia (Novy Urengoy, Nadym, Noyabrsk)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The chemical composition and properties of surface soil horizons (0–10 cm) and PM10 fractions in three cities in northern Western Siberia (Novy Urengoy, Nadym, and Noyabrsk) were studied. The content of Al, Fe, Sc, V, Cr, Co, Ni, Cu, Zn, As, Sr, Mo, Sn, Sb, Cs, Ba, W, Pb, Bi, and U were determined by atomic emission spectrometry and inductively coupled plasma mass spectrometry. It was shown that the average content of potentially toxic elements in urban soils is lower than the average values for the upper part of the Earth’s crust. The contents of Pb, Zn, Sb, and Sn in PM10 particles are 4–16 times higher than the bulk values in soils. In Novy Urengoy, PM10 particles are enriched with Sb and Zn, in Nadym – Sb, Zn, Pb, Ni, Cu, V, and in Noyabrsk – Sb, Zn, Ni, Pb, Cu. Based on the EF values of elements in PM10 particles, broader associations of pollutants are identified. W, As, Sn, Bi, Mo, and Cu appear in the pollution profile. In all cities, Sb and Zn have the highest EF values. The most contrasting Sb anomalies are characteristic of road intersections and transport infrastructure facilities. According to the total enrichment factor, urban soils have an average level of pollution, while PM10 particles have a high level, with Ni, Zn, W, and Cu contributing the most. The PCA method identified the main sources of elements. The formation of the Ni–Co–Cr–W association is linked to the lithogenic component, while the Ba–Pb–Cs association is related to the organic matter. All cities are characterized by the accumulation of Zn, Sb, Cu, Pb, and Mo, an association that indicates the major role of motor vehicles in the contamination of urban soils.

About the authors

A. S Khrebtenko

Lomonosov Moscow State University

Email: hrebtenkoanna@gmail.com
Moscow, Russia

D. V Kotov

Lomonosov Moscow State University

Moscow, Russia

T. V Dubrovskaya

Lomonosov Moscow State University

Moscow, Russia

M. Yu Lychagin

Lomonosov Moscow State University

Moscow, Russia

N. S Kasimov

Lomonosov Moscow State University

Moscow, Russia

References

  1. Безбердая Л.А., Енчилик П.Р., Кошелева Н.Е., Васильчук Дж. Ю., Семенков И.Н., Власов Д.В., Касимов Н.С. Методика выделения гранулометрических фракций почв и пыли методом центрифугирования // Докл. Междунар. сим. “Инженерная экология – 2023”. 2023. С. 178–182.
  2. Битюкова В.Р. Экологический рейтинг городов России // Экология и промышленность России Т. 19. 2015. № 3. С. 34–39. https://doi.org/10.18412/1816-0395-2015-3-34-39
  3. Власов Д.В., Касимов Н.С., Кошелева Н.Е. Геохимия дорожной пыли (Восточный округ Москвы) // Вестн. Моск. ун-та. Сер. 5, геогр. 2015. № 1. С. 23–33.
  4. Власов Д.В., Кукушкина О.В., Кошелева Н.Е., Касимов Н.С. Уровни и факторы накопления металлов и металлоидов в придорожных почвах, дорожной пыли и их фракции РМ10 в Западном округе Москвы // Почвоведение. 2022. № 5. С. 538–555. https://doi.org/10.31857/S0032180X22050112
  5. Геохимия окружающей среды. М.: Недра, 1990. 335 с.
  6. Дорожукова С.Л. Эколого-геохимические особенности нефтегазодобывающих районов Тюменской области. Дис. ... канд. геол-мин. наук. М., 2004. 229 с.
  7. Касимов Н.С., Кошелева Н.Е., Поповичева О.Б., Чалов С.Р., Безбердая Л.А., Власов Д.В., Ерина О.Н., Лычагин М.Ю., Чичаева М.А., Шинкарева Г.Л. Экогеохимия микрочастиц в окружающей среде // Вестник Моск. ун-та. Сер. 5, география. 2025. Т. 80. № 1. С. 3–23. https://doi.org/10.55959/MSU0579-9414.5.80.1.1
  8. Кречков П.П., Дианова Т.М. Химия почв. Аналитические методы исследования. М.: Географический факультет МГУ, 2009. 149 с.
  9. Макоско А.А., Матешева А.В. К оценке экологических рисков от загрязнения атмосферы Арктической зоны в условиях изменяющегося климата в XXI в. // Арктика: экология и экономика. 2022. Т. 12. № 1. С. 34–45. https://doi.org/10.25283/2223-4594-2022-1-34-45
  10. Московченко Д.В. Нефтегазодобыча и окружающая среда: эколого-геохимический анализ Тюменской области. Новосибирск: Наука, 1998. 112 с.
  11. Опекунова М.Г., Опекунов А.Ю., Кукушкин С.Ю., Ганул А.Г. Фоновое содержание химических элементов в почвах и донных осадках севера Западной Сибири // Почвоведение. 2019. № 4. С. 422–439. https://doi.org/10.1134/S0032180X19020114
  12. Поздняков Р.Ю., Московченко Д.В., Кудрявцев А.А. Геохимия снежного покрова г. Нижневартовска // Вестник Тюм. гос. ун-та. Экология и природопользование. Т. 4. 2018. № 1. С. 6–24. https://doi.org/10.21684/2411-7927-2018-4-1-6-24
  13. Ревич Б.А. Мелкодисперсные взвешенные частицы в атмосферном воздухе и их воздействие на здоровье жителей мегаполисов // Проблемы экологического мониторинга и моделирование экосистем. 2018. № 3. С. 53–78.
  14. Сорокина Е.П. Анализ регионального геохимического фона как основа эколого-геохимического картирования равнинных территорий: на примере северной части Западно-Сибирского региона // Прикладная геохимия. Экологическая геохимия. 2001. № 2. С. 316–338.
  15. Сорокина Н. В. Антропогенные изменения северо-таежных экосистем западной Сибири (на примере Надымского района). Дис. ... канд. биол. наук. Тюмень, 2003.
  16. Тышецкий А. А. Особенности почвенного покрова бассейна реки Хыльмитьяха (Надым-Пуровское междуречье) // Вестник Тюм. гос. ун-та. 2014. № 4. С. 39–48.
  17. Юрковская Т. К., Сафронова И. Н. Зональное деление растительного покрова Западной Сибири // Ботанический журнал. 2019. № 1. С. 3–11. https://doi.org/10.1134/S0006813619010113
  18. Acosta J.A., Faz A, Kalbitz K., Jansen B., Martinez-Martinez S. Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment // J. Environ. Monit. 2011. V. 13. P. 3087–3096. https://doi.org/10.1039/c1em10364d
  19. Adimalla N., Qian H., Wang H. Assessment of heavy metal (HM) contamination in agricultural soil lands in northern Telangana, India: an approach of spatial distribution and multivariate statistical analysis // Environ. Monit. Assess. 2019. V. 191. P. 246–261. https://doi.org/10.1007/s10661-019-7408-1
  20. Alves C.A., Vicente E.D., Vicente A.M.P., Riendo I.C., Tomé M., Querol X., Amato F. Loadings, chemical patterns and risks of inhalable road dust particles in an Atlantic city in the north of Portugal // Sci. Total Environ. 2020. V. 737. P. 139596. https://doi.org/10.1016/j.scitotenv.2020.139596
  21. Amato F., Pandolfi M., Viana M., Querol X., Alastuey A., Moreno T. Spatial and chemical patterns of PM10 in road dust deposited in urban environment // Atmos. Environ. 2009. V. 43. P. 1650–1659. https://doi.org/10.1016/j.atmosenv.2008.12.009
  22. Becherday L., Chernikova O., Lychagin M., Asseva E., Tkachenko A., Kasimov N. Pollution of a Black Sea coastal city: potentially toxic elements in urban soils, road dust, and their PM10 fractions // J. Soils Sediments. 2024. V. 24. P. 3485–3506. https://doi.org/10.1007/s11368-024-03893-9
  23. Birch G.F. An assessment of aluminum and iron in normalisation and enrichment procedures for environmental assessment of marine sediment // Sci. Total Environ. 2020. V. 727. P. 138123. https://doi.org/10.1016/j.scitotenv.2020.138123
  24. Cheng X., Huang Y., Zhang S.-P., Ni S.-J., Long Z.-J. Characteristics, sources, and health risk assessment of trace elements in PM10 at an urban site in Chengdu, Southwest China // Aerosol. Air Qual. Res. 2018. V. 18. P. 357–370. https://doi.org/10.4209/aaqr.2017.03.0112
  25. Clarekowska K., Gambus F., Antonkiewicz J., Koliopoulos T. Polycyclic aromatic hydrocarbon and heavy metal contents in the urban soils in southern Poland // Chemosphere. 2019. V. 229. P. 214–226. https://doi.org/10.1016/j.chemosphere.2019.04.209
  26. Dall’Osto M. Beddows D.C., Gietl J.K., Olatunbosun O.A., Yang X., Harrison R.M. Characteristics of tyre dust in polluted air: Studies by single particle mass spectrometry (ATOFMS) // Atmos. Environ. 2014. V. 94. P. 224–230. https://doi.org/10.1016/j.atmosenv.2014.05.026
  27. De Silva Sh., Ball A.S., Indrapala D.V., Reichman S.M. Review of the interactions between vehicular emitted potentially toxic elements, roadside soils, and associated biota // Chemosphere. 2021. V. 263. P. 128135. https://doi.org/10.1016/j.chemosphere.2020.128135
  28. Ericsson E. Independent driving pattern factors and their influence on fuel-use and exhaust emission factors // Transp. Res. Part D: Transp. Environ. 2001. V. 6. 325–345. https://doi.org/10.1016/S1361-9209(01)00003-7
  29. Faramawy S., Zaki T., Sakr A.A-E. Natural gas origin, composition, and processing: A review// J. Natural Gas Sci. Engineer. 2016. P. 30. https://doi.org/10.1016/j.jngse.2016.06.030
  30. Fiala M., Hwang H.M. Influence of highway pavement on metals in road dust: a case study in Houston, Texas // Water, Air, Soil Pollut. 2021. V. 232. P. 185. https://doi.org/10.1007/s11270-021-05139-7
  31. Furberg A., Arvidsson R., Molander S. Dissipation of tungsten and environmental release of nanoparticles from tire studs: A Swedish case study // J. Cleaner Production. 2019. V. 207. P. 920–928. https://doi.org/10.1016/j.jclepro.2018.10.004
  32. Golokhvast K., Vitkina T., Gvozdenko T., Kolosov V., Yankova V., Konfantieva E., Gorkavaya A. et al. Impact of atmospheric microparticles on the development of oxidative stress in healthy city/industrial seaport residents // Oxidative Med. Cell. Longevity. 2015. V. 2015. P. 1–10. https://doi.org/10.1155/2015/412173
  33. Grigoratos T., Martini G. Brake wear particle emissions: a review // Environmental Science and Pollution Research. 2015. V. 22. P. 2491–2504. https://doi.org/10.1007/s11356-014-3696-8
  34. Gunawardana C., Egodawatta P., Gonnetilleke A. Role of particle size and composition in metal adsorption by solids deposited on urban road surfaces // Environ. Pollut. 2014. V. 184. P. 44–53. https://doi.org/10.1016/j.envpol.2013.08.010
  35. Harrison R.M., Jones A.M., Gietl J., Yin J., Green D.C. Estimation of the contributions of brake dust, tire wear, and resuspension to nonexhaust traffic particles derived from atmospheric measurements // Environ. Sci. Technol. 2012. V. 46. P. 6523–6529. http://dx.doi.org/10.1021/es300894r
  36. Heal M., Hibbs L., Agius R., Beverland I. Total and water-soluble trace metal content of urban background PM10, PM2.5 and black smoke in Edinburgh, UK // Atmos. Environ. 2005. V. 39. P. 1417–1430. https://doi.org/10.1016/j.atmosenv.2004.11.026
  37. Kasimov N.S., Vlasov D.V., Kosheleva N.E. Enrichment of road dust particles and adjacent environments with metals and metalloids in eastern Moscow // Urban Climate. 2020. P. 100638. https://doi.org/10.1016/j.uclim.2020.100638
  38. Kasimov N., Chalov S., Chubarova N., Kosheleva N., Popovicheva O., Shartova N., Stepanenko V. et al. Urban heat and pollution island in the Moscow megacity: Urban environmental compartments and their interactions // Urban Climate. 2024. V. 55. P. 101972. https://doi.org/10.1016/j.uclim.2024.101972
  39. Kong S., Lu B., Ji Y., Zhao X., Bai Z., Xu Y., Liu Y., Jiang H. Risk assessment of heavy metals in road and soil dusts within PM2.5, PM10 and PM100 fractions in Dongying City, Shandong Province, China // J. Environ. Monit. 2012. V. 14. P. 791–803. https://doi.org/10.1039/c1em10555h
  40. Krickov I.V., Lim A.G., Shevchenko V.P., Vorobyev S.N., Candaudap F., Pokrovsky O.S. Dissolved Metal (Fe, Mn, Zn, Ni, Cu, Co, Cd, Pb) and Metalloid (As, Sb) in Snow Water across a 2800 km Latitudinal Profile of Western Siberia: Impact of Local Pollution and Global Transfer // Water. 2022. V. 14. P. 94. https://doi.org/10.3390/w14010094
  41. Lychagin M., Porsheva S., Sokolov D., Erina O., Krastyn E., Efimov V., Dubrovskaya T., Kotov D., Kasimov N. Levels, D,S-patterns and source identification of metals and metalloids in river waters of the gas-producing region in the north of Western Siberia (Pur River basin) // Geography, Environment, Sustainability. 2024. V. 17. P. 121–145. https://doi.org/10.24057/2071-9388-2024-3741
  42. Moskovchenko D., Pozhitkov R., Minkina T. Sushkova S. Trace Metals and Polycyclic Aromatic Hydrocarbons in the Snow Cover of the City of Nizhnevartovsk (Western Siberia, Russia) // Arch. Environ. Contam. Toxicol. 2022. V. 84. P. 101–118. https://doi.org/10.1007/s00244-022-00974-z
  43. Moskovchenko D.V., Pozhitkov R., Soromotin A. Snow contamination by metals and metalloids in a polar town: a case study of Nadym, Russia // Arch. Environ. Contam. Toxicol. 2024. V. 86. P. 304–324. https://doi.org/10.1007/s00244-024-01057-x
  44. Moskovchenko D., Pozhitkov R., Soromotin A., Tyurin V. The content and sources of potentially toxic elements in the road dust of Surgut (Russia) // Atmosphere. 2022. V. 13. P. 30. https://doi.org/10.3390/atmos13010030
  45. Nizamuddinov T., Morgan E., Abakumov E., Pechkin A., Kostecki J., Greiner A. Differentiation of Trace Metal Contamination Level between Different Urban Functional Zones in Permafrost Affected Soils (the Example of Several Cities in the Yamal Region, Russian Arctic) // Minerals. 2021. V. 11. P. 668–688. https://doi.org/10.3390/min11070668
  46. Nriagu J., Pacyna J. Quantitative assessment of worldwide contamination of air, water and soils by trace metals // Nature. 1988. V. 333. P. 134–139. https://doi.org/10.1038/333134a0
  47. Ogaki H., Yoshimura K., Asaoka Y., Hayashi S. Antimony from brake dust to the combined sewer collection system via road effluent under rainy conditions // Environ. Monit. Assess. 2021. V. 193. P. 369. https://doi.org/10.1007/s10661-021-09152-5
  48. Peng C., Ouyang Z., Wang M., Chen W., Li X., Critenden J.C. Assessing the combined risks of PAHs and metals in urban soils by urbanization indicators // Environ. Pollut. 2013. V. 178. P. 426–432. https://doi.org/10.1016/j.envpol.2013.03.058
  49. Ramirez O., Sanchez de la Campa A.M., Amato F., Moreno T., Silva L.F., de la Rosa J.D. Physicochemical characterization and sources of the thoracic fraction of road dust in a Latin American megacity // Sci. Total Environ. 2019. V. 652. P. 434–446. https://doi.org/10.1016/j.scitotenv.2018.10.214
  50. Reimann C., de Caritat P. Distinguishing between natural and anthropogenic sources for elements in the environment: regional geochemical surveys versus enrichment factors // Sci. Total Environ. 2005. V. 337. P. 91–107. https://doi.org/10.1016/j.scitotenv.2004.06.011
  51. Rudnick R., Gao S. Composition of the continental crust // Treatise Geochem. 2014. V. 4. P. 1–51. https://doi.org/10.1016/b978-0-08-095975-7.00301-6
  52. Shevchenko V.P., Pokrovsky O.S., Vorobyev S.N., Krickov I.V., Manasypov R.M., Politova N.V., Kopysov S.G. et al. Impact of snow deposition on major and trace element concentrations and elementary fluxes in surface waters of the Western Siberian Lowland across a 1700 km latitudinal gradient // Hydrol. Earth Syst. 2017. V. 21. P. 5725–5746. https://doi.org/10.5194/hess-21-5725-2017
  53. Sutherland R.A. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii // Environ. Geol. 2000. V. 39. P. 611–627. https://doi.org/10.1007/s002540050473
  54. Sycheva D., Kosheleva N. Accumulation of metals and metalloids in soil cover, road dust, and their PM10 fraction in Ulan-Ude: Spatial variation and source apportionment // Applied Soil Ecology. 2025. V. 205. P. 105769. https://doi.org/10.1016/j.apsoil.2024.105769
  55. Trujillo-González J.M., Torres-Mora M.A., Keesstra S., Brevik E.C., & Jiménez-Ballesta R. Heavy metal accumulation related to population density in road dust samples taken from urban sites under different land uses // Sci. Total Environ. 2016. V. 553. P. 636–642. https://doi.org/10.1016/j.scitotenv.2016.02.101
  56. Varentsov M., Konstantinova P., Repina I., Artamonov A., Pechnikova A., Soromotin A., Esau I., Baklanov A. Observations of the urban boundary layer in a cold climate city // Urban Climate. 2023. V. 47. P. 101351. https://doi.org/10.1016/j.uclim.2022.101351
  57. Wagner S., Funk C.W., Müller K., Raithel D.J. The chemical composition and sources of road dust, and of tire and road wear particles—A review // Sci. Total Environ. 2024. V. 926. P. 171694. https://doi.org/10.1016/j.scitotenv.2024.171694
  58. Xu M., Zhang Y. Analysis of leachate contaminants metals in polyphthalamide-modified asphalt and their environmental effects // J. Clean. Prod. 2020. V. 275. P. 123239. https://doi.org/10.1016/J.JCLEPRO.2020.123239
  59. Yoon S., Han S., Jeon K.-J., Kwon S. Effects of collected road dusts on cell viability, inflammatory response, and oxidative stress in cultured human corneal epithelial cells // Toxicol. Lett. 2018. V. 284. P. 152–160 https://doi.org/10.1016/j.toxlet.2017.12.012
  60. Zhang J., Peng J., Song C., Ma C., Men Z., Wu J., Wu L., Wang T., Zhang X., Tao S., Gao S., Hopke P.K., Mao H. Vehicular non-exhaust particulate emissions in Chinese megacities: Source profiles, real-world emission factors, and inventories // Environ. Pollut. 2020. V. 266. P. 115268. https://doi.org/10.1016/j.envpol.2020.115268

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».