Radiocarbon Dating of Polar Soils: Application Features and Genetic Interpretations of Results (Review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The radiocarbon method is actively used in soil science to determine the age of soils, rates of carbon exchange in the soil-atmosphere system, dynamics of organic matter, for geochronological reconstructions in paleopedology. In connection with climate change, intensive thawing of permafrost and, accordingly, the release of deposited carbon, the question of the fate of this carbon in polar ecosystems is acute. The review systematizes modern theoretical, methodological and methodical approaches to the use of the 14C method in soil science and for studying soils and soil-like bodies (soloids) of polar regions. The capabilities of the method for assessing carbon mobilization during permafrost thawing, including the identification of “old” carbon involved in carbon exchange, are shown. Based on 14C data, it was found that the greatest release of “old” soil carbon sources during thawing occurs in soil organic carbon-rich ecosystems that are located in well-drained positions. The article presents the results of dating of Antarctic soils and soloids, which have a modern age and about 500–1000 years old, which is related with active exogenous processes in the oases of Antarctica. The article also presents the results of dating of supraglacial systems on the surface of glaciers in the Arctic and Antarctica, which have a range from modern to n × 10,000 years depending on the carbon source from plant remains to carbon from soils buried under the glacier and fossil coals. The development of the 14C method in terms of reducing the required sample volume and increasing the productivity of scientific equipment will allow it to be effectively used in studying the behavior of carbon over time in soils, palcosols and environmental studies and improving climate change models.

About the authors

E. P Zazovskaya

Center for Applied Isotope Studies, University of Georgia; Institute of Geography of the Russian Academy of Sciences

Email: elya.zazovskaya@uga.edu
ORCID iD: 0000-0002-1202-657X
Athens, USA; Moscow, Russia

References

  1. Абакумов Е.В., Жиянски М., Чиграй С.Н., Поляков В.И. Роль птиц в формировании органо-минеральных криоконитов на ледниках Субантарктики // Русский орнитологический журнал. 2020. № 29. С. 3540–3544.
  2. Абакумов Е.В., Темботов Р.Х. Биохимические свойства криоконитов ледников Центрального Кавказа // Самарская Лука: проблемы региональной и глобальной экологии. 2021. Т. 30. № 3. С. 38–46.
  3. Александров М.В. Ландшафтные структуры и картографирование оазисов Земли Эндерби. Л.: Гидрометеоиздат, 1985.
  4. Александровский А.Л., Чичагова О.А. Радиоуглеродный возраст палеопочв голоцена Восточной лесостепи // Почвоведение. 1998. № 12. С. 1414–1422.
  5. Герасимов И.П. Абсолютный и относительный возраст почв, определяемый по радиоактивному изотопу углерода гумуса // Генетические, географические и исторические проблемы современного почвоведения. М.: Наука, 1976. С. 269–283.
  6. Герасимов И.П., Чичагова О.А. Некоторые вопросы радиоуглеродного датирования почвенного гумуса // Почвоведение. 1971. № 10. С. 3–11.
  7. Горячкин С.В. География экстремальных почв и почвоподобных систем // Вестник РАН. 2022. Т. 92. № 6. С. 564–571.
  8. Горячкин С.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. С. 5–19.
  9. Губин С.В., Лупачев А.В. Роль пятнообразования в формировании и развитии криоземов приморских низменностей севера Якутии // Почвоведение. 2017. № 11. С. 1283–1295.
  10. Зазовская Э.П., Мергелов Н.С., Шишков В.А., Долгих А.В., Добрянский А.С., Лебедева М.П., Турчинская С.М., Горячкин С.В. Криокониты как факторы развития почв в условиях быстрого отступания ледника Альдегонда, Западный Шпицберген // Почвоведение. 2022. № 3. С. 281–295.
  11. Мергелов Н.С. Почвы влажных долин в оазисах Ларсеманн и Вестфолль (Земля Принцессы Елизаветы, Восточная Антарктида) // Почвоведение. 2014. № 9. С. 1027–1045.
  12. Мергелов Н.С., Горячкин С.В., Шоркунов И.Г., Зазовская Э.П., Черкинский А.Е. Эндолитное почвообразование и скальный "загар" на массивно-кристаллических породах в Восточной Антарктике // Почвоведение. 2012. № 10. С. 1027–1044.
  13. Мергелов Н.С., Горячкин С.В., Зазовская Э.П., Карелин Д.В., Никитин Д.А., Кутузов С.С. Супрагляциальные почвы и почвоподобные тела: разнообразие, генезис, функционирование (обзор) // Почвоведение. 2023. № 12. С. 1522–1561.
  14. Соколов Д.А., Дмитревская И.И., Паутова Н.Б., Лебедева Т.Н., Черников В.А., Семенов В.М. Исследование стабильности почвенного органического вещества методами дериватографии и длительной инкубации // Почвоведение. 2021. № 4. С. 407–419.
  15. Чичагова О.А. Радиоуглеродное датирование гумуса почв. М.: Наука, 1985. 157 с.
  16. Чичагова О.А. Современные направления радиоуглеродных исследований органического вещества почв // Почвоведение. 1996. № 1. С. 99–110.
  17. Чичагова О.А., Александровский А.Л., Горячкин С.В., Ковда И.В. Радиоуглеродные исследования как основа оценки потоков углерода в системе почва-атмосфера // Известия Российской академии наук. Сер. Географическая. 2004. № 4. С. 1–7.
  18. Abakumov E., Nizamutdinov T., Polyakov V. Analysis of the polydispersity of soil-like bodies in glacier environments by the laser light scattering (diffraction) method // Biol. Comm. 2021. V. 66. P. 198–209. https://doi.org/10.21638/spbu03.2021.302
  19. Abbott B.W., Larouche J.R., Jones J.B. Jr., Bowden W.B., Balser A.W. Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost // J. Geophys. Res.: Biogeosciences. 2014. V. 119. P. 2049–2063. https://doi.org/10.1002/2014JG002678
  20. Abbott B.W., Baranov V., Mendoza‐Lera C., Nikolakopoulou M., Harjung A., Kolbe T. et al. Using multi‐tracer inference to move beyond single‐catchment ecohydrology // Earth‐Sci. Rev. 2016. V. 160. P. 19–42. https://doi.org/10.1016/j.earscirev.2016.06.014
  21. Agatova A.R., Nepop R.K., Bronnikova M.A., Zhdanova A.N., Moska P., Zazovskaya E.P., Khazina I.V. Problems of 14C dating in fossil soils within tectonically active highlands of Russian Altai in the chronological context of the late Pleistocene megafloods. Catena. 2020. V. 195. P. 104764. https://doi.org/10.1016/j.catena.2020.104764
  22. Anderson D.W., Paul E.A. Organo-mineral complexes and their study by radiocarbon dating // Soil Sci. Soc. Am. J. 1984. V. 48. P. 298–301.
  23. Anderson J.B., Shipp S.S., Lowe A.L., Wellner J.S., Mosola A.B. The Antarctic Ice Sheet during the Last Glacial Maximum and its subsequent retreat history: a review // Quater. Sci. Rev. 2002. V. 21. P. 49–70. https://doi.org/10.1016/S0277-3791(01)00083-X
  24. Anesio A.M., Laybourn-Parry J. Glaciers and ice sheets as a biome // Trends Ecology Evolution. 2012. V. 27. P. 219–225. https://doi.org/10.1016/j.tree.2011.09.012
  25. Barrett J.E., Virginia R.A., Parsons A.N., Wall D.H. Soil carbon turnover in the McMurdo dry valleys, Antarctica // Soil Biol. Biochem. 2006. V. 38. P. 3065–3082.
  26. Berg S., Jivcov S., Kusch S., Kuhn G., Wacker L., Rethemeyer J. Compound-Specific Radiocarbon Analysis of (Sub-)Antarctic Coastal Marine Sediments—Potential and Challenges for Chronologies // Paleoceanography and Paleoclimatology. 2020 V. 35. P. e2020PA003890. https://doi.org/10.1029/2020PA003890
  27. Blume H.P., Beyer L., Bölter M., Erlenkeuser H., Kalk E., Kneesch S., Pfisterer U., Schneider D. Pedogenic zonation of the southern circum polar region // Adv. Geoecology. 1997. V. 30. P. 69–90.
  28. Bockheim J.G. Importance of cryoturbation in redistributing organic carbon in permafrost-affected soils // Soil Sci. Soc. Am. J. 2007. V. 71. https://doi.org/10.2136/sssaj2006.0414N
  29. Bockheim J.G. (ed.) The Soils of Antarctica. Basel: Springer Int., 2015. 322 p.
  30. Bolandini M.A., Daniele De M., Negar H., Lukas W., Jordon D.H., Timothy I.E. et al. Towards Online Ramped Oxidation (ORO)-AMS for Thermal Dissection and Serial Radiocarbon Analysis of Complex Organic Matter // Radiocarbon. 2025. V. 67. P. 471–86. http://dx.doi.org/10.1017/RDC.2025.6
  31. Broecker W.S., Olson E.A. Lamont radiocarbon measurements // Am. J. Sci. Radiocarbon. 1959. V. 1. P. 111–132.
  32. Broecker W.S., Olson E.A. Radiocarbon from Nuclear Tests, II // Science. 1960. V. 16. P. 712–721. https://doi.org/10.1126/science.132.3429.712
  33. Burkins M.B., Virginia R.A., Wall D.H. Organic carbon cycling in Taylor Valley, Antarctica: quantifying soil reservoirs and soil respiration // Global Change Biol. 2001. V. 7. P. 113–125.
  34. Campbell C.A., Paul E.A., Rennie D.A., McCallum K.J. Applicability of the carbon-dating method of analysis to soil humus studies // Soil Science. 1967. V. 104. P. 217–224.
  35. Cherkinsky A.E., Brovkin V.A. Dynamics of Radiocarbon in soils // Radiocarbon. 1993. V. 35. No. 3. P. 363–367.
  36. Cherkinsky A.E., Goryachkin S.V. Distribution and renovation time of soil carbon in boreal and subarctic ecosystems of European Russia // Carbon Cycling in Boreal Forest and Sub-Arctic Ecosystems. Oregon State University / Eds. Kolchugina T., Vinson T. Oregon: Corvallis, 1993. P. 65–69.
  37. Cherkinsky A.E. 14C dating and soil organic matter dynamics in arctic and subarctic ecosystems // Radiocarbon. 1996. V. 38. P. 241–245.
  38. Christensen B.T. Physical fractionation of soil and organic matter in primary particle size and density separates // Advances in Soil Science. Berlin: Springer, 1992. P. 1–90.
  39. Ciais P., Sabine C., Bala G., Bopp L., Brovkin V., Canadell J. et al. Carbon and other biogeochemical cycles // Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change / Ed. Stocker T.F. Cambridge: Cambridge University Press. 2013. P. 465–570.
  40. Cook G.T., van der Plicht J. Conventional Radiocarbon dating. Elsevier: Encyclopedia of Quarternary Science. 2025. P. 560–574.
  41. Coppola A.I., Wiedemeier D.B., Galy V., Haghipour N., Hanke U.M., Nascimento G.S. et al. Global-scale evidence for the refractory nature of riverine black carbon // Nature Geoscience. 2018. V. 11. P. 584–588.
  42. Czimczik C.I., Trumbore S.E., Carbone M.S., Winston G.C. Changing sources of soil respiration with time since fire in a boreal forest // Global Change Biol. 2006. V. 12. P. 957–971. https://doi.org/10.1111/j.1365-2486.2006.01107.x
  43. Da Silva J.P., Leal de Souza J.J.L., Barros Soares E.M., Schaefer C.E.G.R. Soil organic matter accumulation before, during, and after the last glacial maximum in Byers Peninsula, Maritime Antarctica // Geoderma. 2022. V. 428. P. 116221. https://doi.org/10.1016/j.geoderma.2022.116221
  44. De Souza José João Lelis Leal, de Lima Araújo Nadeline Hevelyn, da Silva Jônatas Pedro, Francelino Márcio Rocha, Schaefer Carlos Ernesto Gonçalves Reynaud, Alberti Augusto Pérez-. Signals of soil formation during pre-glacial maximum on the byers peninsula (maritime antarctica) // Catena 2024. V. 245. P. 108332. https://doi.org/10.1016/j.catena.2024.108332
  45. Dean J.F., van der Velde Y., Garnett M.H., Dinsmore K.J., Baxter R., Lessels J.S., et al. Abundant pre‐industrial carbon detected in Canadian Arctic headwaters: Implications for the permafrost carbon feedback // Environ. Res. Lett. 2018. V. 13. P. 034024. https://doi.org/10.1088/1748-9326/aaa1fe
  46. Dean J.F., Meisel O.H., Martyn Rosco M., Marchesini L.B., Garnett M.H., Lenderink H. et al. East Siberian Arctic inland waters emit mostly contemporary carbon // Nature Commun. 2020. V. 11. P. 1–10. https://doi.org/10.1038/s41467-020-15511-6
  47. Dolgikh A.V., Mergelov N.S., Abramov A.A., Lupachev A.V., Goryachkin S.V. Soils of Enderby Land // The Soils of Antarctica. / Ed. Bockheim J.G. Basel: Springer Int., 2015. P. 45–63.
  48. Eglinton T.I., Aluwihare L.I., Bauer J.E., Druffel E.R.M., McNichol A.P. Gas chromatographic isolation of individual compounds from complex matrices for radiocarbon dating // Analytical Chemistry. 1996. V. 68. P. 904–912.
  49. Eglinton T.I., Benitez-Nelson B.C., Pearson A., McNichol A.P., Bauer J.E., Druffel E.R.M. Variability in radiocarbon ages of individual organic compounds from marine sediments // Science. 1997. V. 277. P. 796–799.
  50. Eglinton T.I., Galy V.V., Hemingway J.D., Feng X., Bao H., Blattmann T.M., Dickens A.F. et al. Climate control on terrestrial biospheric carbon turnover // Proceedings of the National Academy of Sciences of the United States of America. 2021. V. 118. P. e2011585118.
  51. Estop‐Aragonés C., Cooper M.D.A., Fisher J.P., Thierry A., Garnett M.H., Charman D.J. et al. Limited release of previously‐frozen C and increased new peat formation after thaw in permafrost peatlands // Soil Biol. Biochem. 2018. V. 118. P. 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010
  52. Estop‐Aragonés C., Czimczik C. I., Heffernan L., Gibson C., Walker J. C., Xu X., Olefeldt D. Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst // Environ. Res. Lett. 2018. V. 1. P. 085002. https://doi.org/10.1088/1748-9326/aad5f0
  53. Estop-Aragonés C., Olefeldt D., Abbott B.W., Chanton J.P., Czimczik C.I., Dean J.F., et al. Assessing the potential for mobilization of old soil carbon after permafrost thaw: A measurement from synthesis of 14C in the northern permafrost region // Global Biogeochem. Cycles. 2020. V. 34. P. e2020GB006672.
  54. Eusterhues K., Rumpel C., Kögel-Knabner I. Stabilization of soil organic matter isolated via oxidative degradation // Org. Geochem. 2005. V. 36. P. 1567–1575. https://doi.org/10.1016/j.orggeochem.2005.06.01
  55. Feng X., Gustafsson Ö., Holmes R.M., Vonk J.E., van Dongen B.E., Semiletov I.P., Dudarev O.V. et al. Multimolecular tracers of terrestrial carbon transfer across the pan-Arctic: 14C characteristics of sedimentary carbon components and their environmental controls // Global Biogeochem. Cycles. 2015. V. 29. P. 1855–1873.
  56. Gerasimov I.P. The age of recent soils // Geoderma. 1974. V. 12. P. 17–25.
  57. Gies H., Lupker M., Galy V., Hemingway J., Boehman B., Schwab M., Haghipour N., Eglinton T.I. Multi-molecular 14C evidence for mineral control on terrestrial carbon storage and export // Philosophical Transactions of the Royal Society A. 2023. V. 381. P. 20220328. https://doi.org/10.1098/rsta.2022.0328
  58. Goryachkin S.V., Cherkinsky A.E., Chichagova O.A. The Soil Organic Carbon Dynamics in High Latitudes of Eurasia Using 14C Data and The Impact of Potential Climate Change // Global Climate Change and Cold Regions Ecosystems. Boca Raton: Lewis Publ., 2000. P. 145–161.
  59. Graven H.D. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century // Proc. Natl Acad. Sci. 2015. V. 112. P. 9542–9545. https://doi.org/10.1073/pnas.1504467112
  60. Hågvar S., Ohlson M., Brittain J.E. A melting glacier feeds aquatic and terrestrial invertebrates with ancient carbon and supports early succession // Arctic, Antarctic, and Alpine Research. 2016. V. 4. P. 551–562. https://doi.org/10.1657/AAAR0016-027
  61. Heim A., Schmidt M.W.I. Lignin turnover in arable soil and grassland analysed with two different labelling approaches // Eur. J. Soil Sci. 2007. V. 58. P. 599–608.
  62. Hicks P.C.E., Schuur E.A.G., Crummer K.G. Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw // Ecosystems. 2012. V. 15. P. 162–173.
  63. Hicks P.C.E., Schuur E.A.G., Crummer K.G. Thawing permafrost increases old soil and autotrophic respiration in tundra: Partitioning ecosystem respiration using 13C and 14C // Global Change Biol. 2013. V. 19. P. 649–661. https://doi.org/10.1111/gcb.12058
  64. Hicks P.C.E., Schuur E.A.G., Natali S.M., Crummer K.G. Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra // Nature Climate Change. 2015. V. 6. P. 214–218. https://doi.org/10.1038/nclimate2830
  65. Hillenbrand C.-D., Larter R.D., Dowdeswell J.A., Ehrmann W., Cofaigh C.Ó., Benetti S, Graham A.G.C., Grobe H. The sedimentary legacy of a palaeo-ice stream on the shelf of the southern Bellingshausen Sea: Clues to West Antarctic glacial history during the Late Quaternary // Quater. Sci. Rev. 2010. V. 29. P. 2741–2763. https://doi.org/10.1016/j.quascirev.2010.06.028
  66. Hodgson D.A., Roberts S.J., Smith J.A., Verleyen E., Sterken M., Labarque M., Sabbe K. et al. Late quaternary environmental changes in Marguerite Bay, Antarctic Peninsula, inferred from lake sediments and raised beaches // Quarter. Sci. Rev. 2013. V. 68. P. 216–236.
  67. Hood E., Fellman J., Spencer R., Hernes P., Edwards R., D'Amore D., Scott D. Glaciers as a source of ancient and labile organic matter to the marine environment // Nature. 2009. V. 462. P. 1044–1047.
  68. Hopkins F.M., Torn M.S., Trumbore S.E. Warming accelerates decomposition of decades-old carbon in forest soils // Proceedings of the National Academy of Sciences of the United States of America. 2012. V. 109. P. E1753–E1761.
  69. Hrbáček F., Goncalo V., Marc O., Megan B., Mauro G., Miguel Á., Antonio M., et al. Active layer monitoring in Antarctica: an overview of results from 2006 to 2015 // Polar Geography. 2018. https://doi.org/10.1080/1088937X.2017.1420105
  70. Hugelius G., Strauss J., Zubrzycki S., Harden J.W., Schuur E.A.G., Ping C.L. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps // Biogeosciences. 2014. V. 11. P. 6573–6593. https://doi.org/10.5194/bg‐11-6573 2014
  71. Hutchings J.A., Bianchi T.S., Kaufman D.S., Kholodov A.L., Vaughn D.R., Schuur E.A.G. Millennial-scale carbon accumulation and molecular transformation in a permafrost core from Interior Alaska // Geochim. Cosmochim. Acta. 2019. V. 253. P. 231–248. https://doi.org/10.1016/j.gca.2019.03.028
  72. Ingólfsson Ó. Quaternary glacial and climate history of Antarctica // Developm. Quarter. Sci. 2004. V. 2. P. 3–43. https://doi.org/10.1016/S1571-0866(04)80109-X
  73. Jagadamma S., Lal R., Ussiri D.A.N., Trumbore S.E., Mestelan S. Evaluation of structural chemistry and isotopic signatures of refractory soil organic carbon fraction isolated by wet oxidation methods // Biogeochemistry. 2010. V. 98. P. 29–44.
  74. Jelinski N.A., Yoo K., Klaminder J. Utilizing a Suite of Isotopic and Elemental Tracers to Constrain Cryoturbation Rates and Patterns in a Non-sorted Circle // Permafrost and Periglac. Process. 2017. V. 28. P. 634–648. https://doi.org/10.1002/ppp. 1944
  75. Jeong G.Y. Radiocarbon ages of sorted circles on King George Island, South Shetland Islands, West Antarctica // Antarctic Sci. 2006. V. 18. P. 265–270.
  76. Johnston C.G., Vestal R. Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: Are they the slowest growing communities on earth? // Appl. Environ. Microbiol. 1991. V. 57. P. 2308–2311.
  77. Jull A.J.T. AMS Radiocarbon Dating. Elsevier: Encyclopedia of Quarternary Science, 2013. P. 316-323.
  78. Kaiser C., Meyer H., Biasi C., Rusalimova O., Barsukov P., Richter A. Conservation of soil organic matter through cryoturbation in arctic soils in Siberia // J. Geophys. Res. 2007. V. 112. P. G02017. https://doi.org/10.1029/2006JG000258
  79. Kelley A.K., Pegoraro E., Mauritz M., Hutchings J., Natali S., Hicks-P.C.E., Schuur E., Lter B.C. Eight Mile Lake Research Watershed, Thaw Gradient: Seasonal thaw depth 2004–2021. 2022. https://doi.org/10.6073/PASTA/854B92439CCCEEC557A810D09DFAF174
  80. Kleber M., Johnson M. Chapter 3 – Advances in Understanding the Molecular Structure of Soil Organic Matter: Implications for Interactions in the Environment / Ed. Sparks D.L. Advances in Agronomy Academic Press, 2010. V. 106. P. 77–142.
  81. Kokelj S.V., Lacelle D., Lantz T.C., Tunnicliffe J., Malone L., Clark I D., Chin K.S. Thawing of massive ground ice in mega slumps drives increases in stream sediment and solute flux across a range of watershed scales // J. Geophys. Res.: Earth Surface. 2013. V. 118. P. 681–692. https://doi.org/10.1002/jgrf.20063
  82. Koven C.D., Ringeval B., Friedlingstein P., Ciais P., Cadule P., Khvorostyanov D. et al. Permafrost carbon‐climate feedbacks accelerate global warming // Proceedings of the National Academy of Sciences of the United States of America. 2011. V. 108. P. 14769–14774. https://doi.org/10.1073/pnas.1103910108
  83. Kusch S., Rethemeyer J., Schefuß E., Mollenhauer G. Controls on the age of vascular plant biomarkers in Black Sea sediments // Geochim. Cosmochim. Acta. 2010. V. 74. P. 7031–7047. https://doi.org/10.1016/j.gca.2010.09.005
  84. Kurie F.N.D. A new mode of disintegration induced by neutrons // Phys. Rev. 1934. V. 45. P. 904905.
  85. Kutschera W. The Versatile Uses of the 14C Bomb Peak // Radiocarbon. 2022. V. 64. P. 1295–1308. https://doi.org/1010.1017/RDC.2022.13
  86. Kuzyakov Y., Bogomolova I., Glaser B. Biochar stability in soil: Decomposition during eight years and transformation as assessed by compound-specific 14C analysis // Soil Biol. Biochem. 2014. V. 70. P. 229–236. https://doi.org/10.1016/j.soilbio.2013.12.021
  87. Lattaud J., Eglinton T.I., Haghipour N., Schiedung M., Bröder L. Biomarker 14C evidence for sources and recycling of pre-aged organic carbon in Arctic permafrost regions // Geochim. Cosmochim. Acta. 2025. V. 393. P. 75–85. https://doi.org/10.1016/j.gca.2025.02.010
  88. Lawrence D.M., Koven C.D., Swenson S.C., Riley W.J., Slater A.G. Permafrost thaw and resulting soil moisture changes regulate projected high‐latitude CO2 and CH4 emissions // Environ. Res. Lett. 2015. V. 10. P. 094011. https://doi.org/10.1088/17489326/10/9/094011
  89. Libby W.F., Anderson E.C., Arnold J.R. Age determination by radiocarbon content: worldwide assay of natural radiocarbon // Science. 1949. V. 109. P. 227–228.
  90. Lupachev A.V., Abakumov E.V., Gubin S.A. The influence of cryogenic mass exchange on the composition and stabilization rate of soil organic matter in cryosols of the Kolyma Lowland (North Yakutia, Russia) // Geosciences. 2017. V. 7. P. 24.
  91. Lupascu M., Welker J.M., Seibt U., Maseyk K., Xu X., Czimczik C.I. High Arctic wetting reduces permafrost carbonfeedbacks to climate warming // Nature Climate Change. 2014. V. 4. P. 51–55. https://doi.org/10.1038/nclimate2058
  92. Lupascu M., Czimczik C.I., Welker M.C., Ziolkowski L.A., Cooper E.J., Welker J.M. Winter ecosystem respiration and sources of CO2 from the High Arctic tundra of Svalbard: Response to a deeper snow experiment // J. Geophys. Res: Biogeosciences. 2018. V. 123. P. 2627–2642.
  93. Lutz S., Ziolkowski L.A., Benning L.G. The Biodiversity and Geochemistry of Cryoconite Holes in Queen Maud Land, East Antarctica // Microorganisms. 2019. V. 7. P. 6016. https://doi.org/10.3390/microorganisms706016
  94. McCrimmon D.O., Bizimis M., Holland A., Ziolkowski L.A. Supraglacial microbes use young carbon and not aged cryoconite carbon // Org. Geochem. 2018. V. 118. P. 63–72. https://doi.org/10.1016/j.orggeochem.2017.12.002
  95. McGuire A.D., Lawrence D.M., Koven C., Clein J.S., Burke E., Chen G., Jafarov E., et al. Dependence of the evolution of carbon dynamics in the northern permafrost region on the trajectory of climate change // Proceedings of the National Academy of Sciences of the United States of America. 2018. V. 115. P. 3882–3887.
  96. Meredith M., Sommerkorn M., Cassotta S., Derksen C., Ekaykin A., Hollowed A., Kofinas G. et al. Polar Regions. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, 2019. 118 p.
  97. Mergelov N., Mueller C.W., Prater I., Shorkunov I., Dolgikh A., Zazovskaya E., Shishkov V. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth // Scientific Reports. 2018. V. 8. P. 21682.
  98. Mergelov N., Dolgikh A., Shorkunov I., Zazovskaya E., Soina V., Yakushev A., Fedorov-Davydov D. et al. Hypolithic communities shape soils and organic matter reservoirs in the ice-free landscapes of East Antarctica // Scientific Reports. 2020. V. 10. P. 10277.
  99. Mergelov N.S., Zazovskaya E.P., Goryachkin S.V. Exploring principles of aggregation between organic and mineral phases on ice: insights from cryoconite granules of two mountain glaciers // Biogenic – abiogenic interactions in natural and anthropogenic systems. VII International Symposium. Saint Petersburg: Skifia-print, 2022. P. 17–18.
  100. Michaelson G.J., Ping C.L., Kimble J.M. Carbon storage and distribution in tundra soils of Arctic Alaska, USA // Arct. Alp. Res. 1996. V. 28. P. 414–424.
  101. Mishra U., Hugelius G., Shelef E., Yang Y., Strauss J., Lupachev A. et al. Spatial heterogeneity and environmental predictors of permafrost region soil organic carbon stocks // Sci. Adv. 2021. V. 7. P. eaaz5236. https://doi.org/10.1126/sciadv.aaz5236
  102. Mook W.G., Streurman H.J. Physical and chemical aspects of radiocarbon dating // Proceedings of the Groningen Symposium on 14C and Archaeology. PACT Publ., 1983. P. 31–55.
  103. Müller M., Döbeli M., Suter M., Synal H.-A. Performance of the ETH gas ionization chamber at low energy // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms. 2012. V. 287. P. 94–102.
  104. Natali S.M., Schuur E.A.G., Trucco C., Hicks P.C.E., Crummer K.G., Baron Lopez, A.F. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra // Global Change Biol. 2011. V. 17. P. 1394–1407. https://doi.org/10.1111/ j.1365-2486.2010.02303.x
  105. Nizamutdinov T., Mavlyudov B., Polyakov V., Abakumov E. Sediments from cryoconite holes and dirt cones on the surface of Svalbard glaciers: main chemical and physicochemical properties // Acta Geochimica. 2023. V. 42. P. 346–359. https://doi.org/10.1007/s11631-022-00586-3.
  106. Palmtag J., Ramage J., Hugelius G., Gentsch N., Lashchinskiy N., Richter A., Kuhry P. Controls on the storage of organic carbon in permafrost soil in northern Siberia // Eur. J. Soil Sci. 2016. V. 67. P. 478–491. https://doi.org/10.1111/ejss.12357
  107. Paul E.A., Campbell C.A., Rennie D.A., McCallum K.J. Investigations of the dynamics of soil humus utilizing carbon dating techniques // Trans. Int. Congr. Soil Sci. 8th. Bucharest. 31 Aug. –9 Sept. V. 3. Bucharest: Rompresfilatelia, 1964. P. 201-209.
  108. Paul E.A., Horwath W.R., Harris D., Follet R., Leavitt S., Kimball B.A., Pregitzer K. Establishing the pool sizes and fluxes of CO2 emissions from soil organic matter turnover. // Soils and Global Change. / Eds. Lal R. et al. Boca Raton: Lewis Publ., 1995. P. 297–308.
  109. Paul E.A., Follett R.F., Leavitt S.W., Halvorson A., Peterson G.A., Lyon D.J. Radiocarbon dating for determination of soil organic matter pool sizes and dynamics // Soil Sci. Soc. Am. J. 1997. V. 61. P. 1058–1067.
  110. Paustian K., Parton W. J. Persson J. Modeling soil organic matter in organic-amended and N-fertilized long-term plots. Soil Sci. Soc. Am. J. 1992. V. 56. P. 476–488.
  111. Pedron S.A., Welker J.M., Euskirchen E.S., Klein E.S., Walker J.C., Xu X., Czimczik C.I. Closing the winter gap—Year-round measurements of soil CO2 emission sources in Arctic tundra // Geophysical Research Letters. 2022. V. 49. P. e2021GL097347.
  112. Pithan F., Mauritsen T. Arctic amplification dominated by temperature feedback in contemporary climate models // Nature Geoscience. 2014. V. 7. P. 181–184.
  113. Plante A.F., Beaupré S.R., Roberts M.L., Baisden T. Distribution of radiocarbon ages in soil organic matter by thermal fractionation // Radiocarbon. 2013. V. 55. P. 1077–1083.
  114. Polyakov V., Zazovskaya E., Abakumov E. Molecular composition of humic substances isolated from selected soils and cryconite of the Grønfjorden area, Spitsbergen // Polish Polar Research. 2019. V. 40. P. 105–120 https://doi.org/10.24425/ppr.2019.12836
  115. Reimer P.J., Brown T.A., Reimer R.W. Discussion: Reporting and Calibration of Post-Bomb 14C Data // Radiocarbon. 2004. V. 46. P. 1299–1304.
  116. Reimer P., Austin W., Bard E., Bayliss, A., Blackwell P., Bronk Ramsey C., Talamo S. The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve (0– 55 cal kBP) // Radiocarbon. 2020. V. 62. P. 725–757.
  117. Rosenheim B.E., Day M.B., Domack E., Schrum H., Benthien A. Hayes J.M. Antarctic sediment chronology by programmed-temperature pyrolysis: Methodology and data treatment // Geochemistry, Geophysics, Geosystems. 2008. V. 9. P. 1–16.
  118. Schaefer K., Lantuit H., Romanovsky V. E., Schuur E. A. Witt R. The impact of the permafrost carbon feedback on global climate // Environ. Res. Lett. 2014. V. 9. P. 085003. https://doi.org/10.1088/1748-9326/9/8/085003
  119. Scheidt S., Berg S., Hambach U., Klasen N., Pötter S., Stolz A., Veres D. et al. Chronological Assessment of the Balta Alba Kurgan Loess-Paleosol Section (Romania) – A Comparative Study on Different Dating Methods for a Robust and Precise Age Model // Front. Earth Sci. 2021. V. 8. P. 598448. https://doi.org/10.3389/feart.2020.598448
  120. Schmidt M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kögel-Knabner I., Lehmann J., Manning D.A.C., Nannipieri P., Rasse D.P., Weiner S., Trumbore S.E. Persistence of soil organic matter as an ecosystem property // Nature. 2011. V. 478. P. 49–56.
  121. Schuur E. A. G., McGuire A. D., Grosse G., Harden J. W., Hayes D. J., Hugelius G., et al. Climate change and the permafrost carbon feedback // Nature. 2015. V. 520. P. 171–179. https://doi.org/10.1038/nature14338
  122. Schuur E. A. G., Trumbore S. E. Partitioning sources of soil respiration in boreal black spruce forest using radiocarbon // Global Change Bioly. 2006. V. 12. P. 165–176. https://doi.org/10.1111/j.1365-2486.2005.01066.x
  123. Schuur E. A. G., Crummer K.G., Vogel J.G., Mack M.C. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan Tundra // Ecosystems. 2007. V. 10. P. 280–292. https://doi.org/10.1007/s10021-007-9024-0
  124. Schuur E.A.G., Vogel J.G., Crummer K.G., Le, H., Sickman J.O., Osterkamp T. E. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra // Nature. 2009. V. 459(7246). P. 556–559. https://doi.org/10.1038/nature08031
  125. Schuur E.A.G., Druffel E.R.M., Trumbore S.E. et al. Radiocarbon and Climate Change: Mechanisms. Applications and Laboratory Techniques. Springer, 2016. 315 p.
  126. Schuur E.A.G., McGuire A.D., Romanovsky V., Schädel C., Mack M. Arctic and boreal carbon // Second State of the Carbon Cycle Report (SOCCR2): A sustained assessment report / Eds. Cavallaro N. et al. Washington: Global Change Research Program, 2018. P. 428–468.
  127. Schuur E.A.G., Hicks P.C, Mauritz M., Pegoraro E., Rodenhizer H., See C., Ebert C. Ecosystem and soil respiration radiocarbon detects old carbon release as a fingerprint of warming and permafrost destabilization with climate change // Phil. Trans. R. Soc. A. 2023. V. 381. P. 20220201. https://doi.org/10.1098/rsta.2022.0201
  128. Simonson R.W. Outline of a generalized theory of soil genesis // Soil Sci. Soc. Am. Proceedings. 1959. P. 152–156.
  129. Singer G.A., Fasching C., Wilhelm L., Niggemann J., Steier P., Dittmar T., Battin T.J. Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate // Nature Geoscience. 2012. V. 5. P. 710–714. https://doi.org/10.1038/ngeo1581
  130. Six J., Paustian K., Elliott E.T., Combrink C. Soil structure and organic matter I. Distribution of aggregate-size classes and aggregate-associated carbon // Soil Sci. Soc. Am. J. 2000. V. 64. P. 681–689.
  131. Stevens M.I., Mackintosh A.N. Location, location, location: survival of Antarctic biota requires the best real estate // Biol. Lett. 2023. V. 19. P. 20220590. https://doi.org/10.1098/rsbl.2022.0590
  132. Stoner S., Trumbore S.E., González-Pérez J.A., Schrumpf M., Sierra C.A., Hoyt A.M., Chadwick O. Doetterl S. Relating mineral–organic matter stabilization mechanisms to carbon quality and age distributions using ramped thermal analysis // Phil. Trans. R. Soc. A. 2023. P. 38120230139. http://doi.org/10.1098/rsta.2023.0139
  133. Strauss J., Laboor S., Schirrmeister L., Fedorov A. N., Fortier D., Froese D., etal. Circum‐Arctic map of the Yedoma permafrost domain // Frontiersn Earth Sci. 2021. 9. https://doi.org/10.3389/feart.2021.758360
  134. Stubbins A., Hood E., Raymond P.A., Aiken G.R., Sleighter R.L., Hernes P.J., Butman D., Hatcher P.G., Striegl R.G., Schuster P., Abdulla H.A.N., Vermilyea A.W., Scott D.T., Spencer R.G. Anthropogenic aerosols as a source of ancient dissolved organic matter in glaciers // Nature Geoscience. 2012. V. 5. P. 198–201. https://doi.org/10.1038/ngeo1403Spencer
  135. Stuiver M., Polach H.A. Reporting of C-14 data—discussion // Radiocarbon. 1977. V. 19. P. 355–363.
  136. Sun H.J., Friedmann E.I. Growth on geological time scales in the Antarctic cryptoendolithic microbial community // Geomicrobiol. J. 1999. V. 16. P. 193–202.
  137. Synal H.A., Stoker M., Suter M. MICADAS: A new compact radiocarbon AMS system // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007. V. 259. P. 7–13.
  138. Swanston C.W., Torn M.S., Hanson P.J., Southon J.R., Garten C.T., Hanlon E.M., Ganio L. Initial characterization of processes of soil carbon stabilization using forest stand-level radiocarbon enrichment // Geoderma. 2005. V. 128. P. 52–62.
  139. Tamm C., Östlund H. Radiocarbon Dating of Soil Humus // Nature. 1960. V. 185. P. 706–707. https://doi.org/10.1038/185706b0
  140. Trumbore S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground C dynamics // Ecolog. Appli. 2000. V. 10. P. 399–411. https://doi.org/10.1890/1051-0761(2000)010[0399:AOSOMA]2.0.CO;2
  141. Trumbore S. Radiocarbon and soil carbon dynamics // Annual Rev. Earth Planetary Sci. 2009. V. 37. P. 47–66. https://doi.org/10.1146/annurev.earth.36.031207.124300
  142. Trumbore S.E., Zheng S.H. Comparison of fractionation methods for soil organic matter 14C analysis // Radiocarbon. 1996. V. 38. P. 219–229.
  143. Trumbore S.E., Xu X., Santos G.M., Czimczik C.I., Beaupré S.R., Pack M.A., Hopkins F.M., Stills A., Lupascu M., Ziolkowski L. Preparation for Radiocarbon Analysis // Radiocarbon and Climate Change: Mechanisms, Applications and Laboratory Techniques. Springer, 2016. P. 279–315.
  144. Vonk J.E., Tank S.E., Bowden W.B., Laurion I., Vincent W.F., Alekseychik P. et al. Reviews and syntheses: Effects of permafrost thaw on Arctic aquatic // Biogeosciences. 2015. V. 12. P. 7129–7167. https://doi.org/10.5194/bg-12-7129-2015
  145. Wacker L., Němec M., Bourquin J. A revolutionary graphitisation system: Fully automated, compact and simple, Nuclear Instruments and Methods in Physics Research Section B // Beam Interactions with Materials and Atoms. 2010. V. 268. P. 931–934. https://doi.org/10.1016/j.nimb.2009.10.067
  146. Wacker L., Fahrni S.M., Hajdas I., Molnár M., Synal H.A., Szidat S., Zhang Y.L. A versatile gas interface for routine 14C analysis with a gas ion source // NIM B 294. 2013. P. 315–319.
  147. Winston G.C., Sundquist E.T., Stephens B.B., Trumbore S.E. Winter CO2 fluxes in a boreal forest // J. Geophys. Res. 1997. V. 102. P. 28795–28804. https://doi.org/10.1029/97jd01115
  148. Xu C., Guo L., Ping C.-L., White D. M. Chemical and isotopic characterization of size-fractionated organic matter from cryoturbated tundra soils, northern Alaska // J. Geophys. Res. 2009. V. 114. P. G03002. https://doi.org/10.1029/2008JG000846
  149. Xu X. Atmospheric 14CO2 time series from Point Barrow, Alaska: ending of the ‘Bomb Radiocarbon Period’ in the Northern Hemisphere. 2022.
  150. Zazovskaya E.P., Fedorov-Davydov D.G., Alekseeva T.V., Dergacheva M.I. Soils of Queen Maud Land // The Soils of Antarctica / Ed. Bockheim J.G. Basel: Springer Int., 2015. P. 21–44.
  151. Zazovskaya E., Mergelov N., Shishkov V., Dolgikh A., Miamin V., Cherkinsky A., Goryachkin S. Radiocarbon age of soils in oases of East Antarctica // Radiocarbon. 2017. V. 59. P. 489–503. https://doi.org/10.1017/RDC.2016.75
  152. Zech M., Kreutzer S., Zech R., Goslar T., Meszner S., McIntyre C., Fuchs M. Comparative 14C and OSL dating of loess-paleosol sequences to evaluate post-depositional contamination of n-alkane biomarkers // Quarter. Res. 2017. V. 87. P. 180–189. https://doi.org/10.1017/qua.2016.7
  153. Zimov S.A., Schuur E.A.G., Chapin F.S. Permafrost and the global carbon budget // Science. 2006. V. 312. P. 1612–1613.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».