PROTO-SOILS OF THE POLAR REGIONS: A STUDY OF ORGANIC AND MINERAL COMPONENTS WITH THE USE OF RAMAN SPECTROSCOPY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Proto-soils with cryptogamic-microbial organogenous horizons occupy a significant part of land and are most noticeable in areas with extreme conditions (Antarctica, High Arctic, highlands and hot deserts), i.e., where the development of vascular plants is suppressed or impossible. The latter determines a specific set of soil formation products, as well as processes of carbon accumulation and transformation. Given the features of the microstructure of proto–soils with microbial horizons, their study requires sensitive non–destructive methods with high spatial resolution. One of them can be Raman spectroscopy (RS), which is successfully used to study interactions between microorganisms and minerals. Here, we explored organic and mineral components of endolithic and hypolithic proto-soils from East Antarctica and Severny Island of the Novaya Zemlya Archipelago. Crystalline polymorphic modifications of calcium carbonate (calcite and aragonite), gypsum, calcium oxalate (whewellite), polyenes (carotenoids), hematite and goethite were identified. A set of bands indicating combinations of Fe oxide-hydroxides and carotenoids, as well as CaCO3 and carotenoids, was often encountered in the Raman spectra, which suggests stable spatially localized associations of these compounds in a volume of about 1 μm3. It is assumed that in situ weathering of Ca–containing silicate minerals played an important role in the formation of CaCO3 on non–carbonate rocks (gneisses). It was demonstrated that complex microhorizons with the possibility of long–term carbon stabilization – removal of C from rapid biogeochemical cycle both in the form of organic and inorganic compounds – are formed in the proto-soils.

About the authors

N. S Mergelov

Institute of Geography of the Russian Academy of Sciences

Email: mergelov@igras.ru
ORCID iD: 0000-0001-5796-5960
Moscow, Russia

References

  1. Абакумов Е.В. Первичные почвы в природных и антропогенных экосистемах. Автореф. Дис. … докт. биол. наук. Тольятти, 2012. 40 с.
  2. Алексеева Т.В., Алексеев А.О. Кислая сульфатная палеопочва в отложениях среднего девона на территории Центрального девонского поля (Павловский карьер, Воронежская область) // Почвоведение. 2024. № 1. С. 14–26.
  3. Астробиология. Дубна: ОИЯИ, 2024. 199 с.
  4. Величко Н.В., Рабочая Д.Е., Долгих А.В., Мергелов Н.С. Цианобактерии в гиполитных горизонтах почв оазиса Ларсеманн, Восточная Антарктида // Почвоведение. 2023. № 8. C. 925–942. https://doi.org/10.31857/S0032180X2260161X
  5. Горячкин С.В. География экстремальных почв и почвоподобных систем // Вестник РАН. 2022. № 92. С. 564–571.
  6. Горячкин С.В., Мергелов Н.С., Таргульян В.О. Генезис и география почв экстремальных условий: элементы теории и методические подходы // Почвоведение. 2019. № 1. C. 5–19. https://doi.org/10.1134/S0032180X19010040
  7. Ладыгин В.Г., Ширшикова Г.Н. Современные представления о функциональной роли каротиноидов в хлоропластах эукариот // Журнал общей биологии. 2006. № 67. C. 163–190.
  8. Мергелов Н.С. Почвы влажных долин в оазисах Ларсеманн и Вестфолль (Земля принцессы Елизаветы, Восточная Антарктида) // Почвоведение. 2014. № 9. С. 1027–1045. https://doi.org/10.7868/S0032180X14090093
  9. Мергелов Н.С., Горячкин С.В., Шоркунов И.Г., Зазовская Э.П., Черкинский А.Е. Эндолитное почвообразование и скальный “загар” на массивно– кристаллических породах в Восточной Антарктиде // Почвоведение. 2012. № 10. С. 1027–1044.
  10. Наугольных С.В. Признаки почвообразования в раннем протерозое на материале из отложений ливвия (Карелия) // Почвоведение. 2024. № 1. С. 27–36. https://doi.org/10.31857/S0032180X24010034
  11. Тагирова А.Р., Алфимова Н.А. Петрографическая характеристика пород зоны современного выветривания оазиса Холмы Ларсеманн (Земля Принцессы Елизаветы, Восточная Антарктида) // Тр. Кольского НЦ РАН. 2019. Т. 10. № 6. С. 254–260.
  12. Agarwal P., Bora D.K. The photoelectrochemical response of a β-carotene coated hematite nanoarchitecture biophotoelectrode with cauliflower and nano octahedron types morphologies // J. Electrochem. Soc. 2019. V. 166. P. H541.
  13. Agnelli A., Corti G., Massaccesi L., Ventura S., D’Acqui L.P. Impact of biological crusts on soil formation in polar ecosystems // Geoderma. 2021. V. 401 P. 115340.
  14. Aharon P. Oxygen, carbon, and U-series isotopes of aragonites from Vestfold Hills, Antarctica: clues to geochemical processes in subglacial environments // Geochim. Cosmochim. Acta. 1988. V. 52. P. 2321–2331.
  15. Belnap J. The world at your feet: desert biological soil crusts // Frontiers Ecol. Environ. 2003. V. 1. P. 181–189.
  16. Biological soil crusts as an organizing principle in drylands. Springer Int. Publ., 2016. 549 p.
  17. Bliss D., Smith H. Penetration of light into soil and its role in the control of seed germination // Plant, Cell Environ. 1985. V. 8. P. 475–483.
  18. Brocks J.J., Schaeffer P. Okenane, a biomarker for purple sulfur bacteria (Chromatiaceae), and other new carotenoid derivatives from the 1640 Ma Barney Creek Formation // Geochim. Cosmochim. Acta. 2008. V. 72. P. 1396–1414.
  19. Chandra A., Kumar V., Garnaik U.C., Dada R., Qamar I., Goel V.K., Agarwal S. Unveiling the Molecular Secrets: A Comprehensive Review of Raman Spectroscopy in Biological Research // ACS Omega. 2024. V. 9. P. 50049–50063.
  20. Corrado G., Sanchez-Cortes S., Francioso O., Garcia-Ramos J.V. Surface–enhanced Raman and fluorescence joint analysis of soil humic acids // Analyt. Chim. Acta. 2008. V. 616. P. 69–77.
  21. Damsté J.S., Koopmans M.P. The fate of carotenoids in sediments: an overview // Pure Appl. Chem. 1997. V. 69. P. 2067–2074.
  22. de Oliveira V.E., Miranda M.A.N., Soares M C.S., Edwards H.G., de Oliveira L.F.C. Study of carotenoids in cyanobacteria by Raman spectroscopy // Spectrochim. A: Molecular and Biomolecular Spectroscopy. 2015. V. 150. P. 373–380.
  23. Doane T.A. Photochemical Emission from Soil as a Source of Atmospheric CO2 // ACS Earth Space Chem. 2025. V. 9. P. 207−210.
  24. Dorn R.I. Rock varnish revisited // Progress in Physical Geography: Earth and Environment. 2024. V. 48. P. 389–419.
  25. Dupraz C., Reid R.P., Braissant O., Decho A.W., Norman R.S., Visscher P.T. Processes of carbonate precipitation in modern microbial mats // Earth-Sci. Rev. 2009. V. 96. P. 141–162.
  26. Duran P., Mora M.D.L.L., Matus F., Barra P.J., Jofré I., Kuzyakov Y., Merino C. Biological crusts to increase soil carbon sequestration: New challenges in a new environment // Biology. 2021. V. 10. P. 1190.
  27. Edwards H.G., Moody C.D., Villar S.E.J., Wynn-Williams D.D. Raman spectroscopic detection of key biomarkers of cyanobacteria and lichen symbiosis in extreme Antarctic habitats: evaluation for Mars Lander missions // Icarus. 2005. V. 174. P. 560–571.
  28. Edwards H.G., Wynn‐Williams D.D., Villar S.E.J. Biological modification of haematite in Antarctic cryptoendolithic communities // J. Raman Spectroscopy. 2004. V. 35. P. 470–474.
  29. Elbert W., Weber B., Burrows S., Steinkamp J., Büdel B., Andreae M.O., Pöschl U. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen // Nature Geoscience. 2012. V. 5. P. 459–462.
  30. Frank-Kamenetskaya O.V., Ivanyuk G.Y., Zelenskaya M.S., Izatulina A.R., Kalashnikov, A.O., Vlasov D.Y., Polyanskaya E.I. Calcium oxalates in lichens on surface of apatite–nepheline ore (Kola Peninsula, Russia) // Minerals. 2019. V. 9. P. 656.
  31. Freeman J.J., Wang A., Kuebler K.E., Jolliff B.L., Haskin L.A. Characterization of natural feldspars by Raman spectroscopy for future planetary exploration // Can. Mineralogist. 2008. V. 46. P. 1477–1500.
  32. Friedmann E.I. Endolithic microorganisms in the Antarctic cold desert // Science. 1982. V. 215(4536). P. 1045–1053.
  33. Friedmann E.I., Weed R. Microbial trace–fossil formation, biogenous, and abiotic weathering in the Antarctic cold desert // Science. 1987. V. 236(4802). P. 703–705.
  34. Frisia S., Dietzel M., Borsato A., Németh P., Pettauer M., Hellstrom J.C., Demény A., Pekker P., Rinyu L., Pécz B., Augustinus P.C. Co-precipitation of calcite and (Al)–Si–OH phases in Pleistocene subglacial environments of the East Antarctic Ice Sheet // Geochim. Cosmochim. Acta. 2025. V. 402. P. 277–290.
  35. Frost R.L. Raman spectroscopy of natural oxalates // Analyt. Chim. Acta. 2004. V. 517. P. 207–214.
  36. Gadd G.M., Bahri-Esfahani J., Li Q., Rhee Y.J., Wei Z., Fomina M., Liang X. Oxalate production by fungi: significance in geomycology, biodeterioration and bioremediation // Fungal Biol. Rev. 2014. V. 28. P. 36–55.
  37. Gao F.G., Bard A.J., Kispert L.D. Photocurrent generated on a carotenoid-sensitized TiO2 nanocrystalline mesoporous electrode // J. Photochem. Photobiol. A: Chem. 2000. V. 130. P. 49–56.
  38. Georgiou C.D., Sun H.J., McKay C.P., Grintzalis K., Papapostolou I., Zisimopoulos D. et al. Evidence for photochemical production of reactive oxygen species in desert soils // Nature Commun. 2015. V. 6. P. 7100.
  39. Gorbushina A.A. Life on the rocks // Environ. Microbiol. 2007. V. 9. P. 1613–1631.
  40. Gore D.B., Creagh D.C., Burgess J.S., Colhoun E.A., Spate A.P., Baird A.S. Composition, distribution and origin of surficial salts in the Vestfold Hills, East Antarctica // Antarctic Sci. 1996. V. 8. P. 73–84.
  41. Gore D.B., Leishman M.R. Salt, sediments and weathering environments in Bunger Hills // Antarctic Sci. 2020. V. 32. P. 138–152.
  42. Hanesch M. Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies // Geophys. J. Int. 2009. V. 177. P. 941–948.
  43. Jehlička J., Edwards H.G.M., Culka A. Using portable Raman spectrometers for the identification of organic compounds at low temperatures and high altitudes: exobiological applications // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2010. V. 368. P. 3109–3125.
  44. Johnston C.G., Vestal J.R. Biogeochemistry of oxalate in the Antarctic cryptoendolithic lichen–dominated community // Microbial Ecology. 1993. V. 25. P. 305–319.
  45. Jorge-Villar S.E., Edwards H.G. Microorganism response to stressed terrestrial environments: a Raman spectroscopic perspective of extremophilic life strategies // Life. 2013. V. 3. P. 276–294.
  46. Jung P., Briegel-Williams L., Dultz S., Neff C., Heibrock G., Monger C. et al. Hard shell, soft blue-green core: Ecology, processes, and modern applications of calcification in terrestrial cyanobacteria // Iscience. 2024. V. 27.
  47. Kamennaya N.A., Ajo-Franklin C.M., Northen T., Jansson C. Cyanobacteria as biocatalysts for carbonate mineralization // Minerals. 2012. V. 2. P. 338–364.
  48. Kawaguchi T., Decho A.W. A laboratory investigation of cyanobacterial extracellular polymeric secretions (EPS) in influencing CaCO3 polymorphism // J. Crystal Growth. 2002. V. 240. P. 230–235.
  49. Kiernan K., Gore D.B., Fink D., White D.A., McConnell A., Sigurdsson I.A. Deglaciation and weathering of Larsemann Hills, East Antarctica // Antarctic Sci. 2009. V. 21. P. 373–382.
  50. Kim Y., Caumon M. C., Barres O., Sall A., Cauzid J. Identification and composition of carbonate minerals of the calcite structure by Raman and infrared spectroscopies using portable devices // Spectrochim. Acta A: Molecular and Biomolecular Spectroscopy. 2021. V. 261. P. 119980.
  51. Lafuente B., Downs R.T., Yang H., Stone N. The power of databases: the RRUFF project // Highlights in mineralogical crystallography / Eds.: Armbruster T., Danisi R.M. Berlin: De Gruyter, 2015. P. 1–30.
  52. Liu Y., Wang A., Freemen J. Raman, MIR, and NIR spectroscopic study of calcium sulfates: gypsum, bassanite, and anhydrite [abstract 2128] // 40th Lunar and Planetary Sci. Conf. CD-ROM. 2009.
  53. Ma Y.F., Gao Y.H., Feng Q.L. Effects of pH and temperature on CaCO3 crystallization in aqueous solution with water soluble matrix of pearls // J. Crystal Growth. 2010. V. 312. P. 3165–3170.
  54. Maia L.F., Fernandes R.F., Lobo‐Hajdu G., de Oliveira L.F. Conjugated polyenes as chemical probes of life signature: use of Raman spectroscopy to differentiate polyenic pigments // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 2014. V. 372(2030). P. 20140200.
  55. Martínez-Pabello P.U., Mergelov N.S., Bronnikova M.A., Sedov S.N., Lebedeva M.P., Golovanov D.L., Trejo-Martin P. Desert Varnish – a “Microsoil” of the Arid Environments: Origin, Geographical Variability, and Paleoecological Significance // Eurasian Soil Sci. 2025. V. 58. P. 94. https://doi.org/10.1134/S1064229325600447
  56. McCoy D.E., Burns D.H., Klopfer E., Herndon, L.K., Ogunlade B., Dionne J.A., Johnsen S. Heart cockle shells transmit sunlight to photosymbiotic algae using bundled fiber optic cables and condensing lenses // Nature Commun. 2024. V. 15. P. 9445.
  57. Mergelov N., Dolgikh A., Shorkunov I., Zazovskaya E., Soina V., Yakushev A. et al. Hypolithic communities shape soils and organic matter reservoirs in the ice-free landscapes of East Antarctica // Scientific Reports. 2020. V. 10. P. 10277.
  58. Mergelov N., Mueller C.W., Prater I., Shorkunov I., Dolgikh A., Zazovskaya E. et al. Alteration of rocks by endolithic organisms is one of the pathways for the beginning of soils on Earth // Scientific Reports. 2018. V. 8. P. 3367.
  59. Meslier V., Casero M.C., Dailey M., Wierzchos J., Ascaso C., Artieda O. et al. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert // Environmental microbiology. 2018. V. 20. P. 1765–1781.
  60. Mitchell R.L., Strullu‐Derrien C., Sykes D., Pressel S., Duckett J.G., Kenrick P. Cryptogamic ground covers as analogues for early terrestrial biospheres: Initiation and evolution of biologically mediated proto‐soils // Geobiology. 2021. V. 19. P. 292–306.
  61. Molnár Z., Pekker P., Rečnik A., Pósfai M. Formation and properties of spindle–shaped aragonite mesocrystals from Mg–bearing solutions // Nanoscale. 2024. V. 16. P. 2012–2021.
  62. Němečková K., Culka A., Jehlička J. Detecting pigments from gypsum endoliths using Raman spectroscopy: From field prospection to laboratory studies // J. Raman Spectroscopy. 2022. V. 53. P. 630–644.
  63. Neumann-Micheau N., Tributsch H. Luminescence light collection technology in the aragonite of stone corals // Bioinspiration Biomimetics. 2018. V. 13. P. 066006.
  64. Obst M., Dynes J.J., Lawrence J.R., Swerhone G.D., Benzerara K., Karunakaran C., Kaznatcheeva K., Tyliszczake T., Hitchcock A.P. Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: a STXM study of the influence of EPS on the nucleation process // Geochim. Cosmochim. Acta. 2009. V. 73. P. 4180–4198.
  65. On Biomineralization. New York: Oxford University Press, 1989. 324 p.
  66. Pointing S.B., Belnap J. Microbial colonization and controls in dryland systems // Nature Reviews Microbiology. 2012. V. 10. P. 551–562.
  67. Polyakov N.E., Focsan A.L., Gao Y., Kispert L.D. The endless world of carotenoids – structural, chemical and biological aspects of some rare carotenoids // Int. J. Molecular Sci. 2023. V. 24. P. 9885.
  68. Retallack G.J. Criteria for distinguishing microbial mats and earths // SEPM Special Publication. 2012. V. 101. P. 139–152.
  69. Rodriguez-Caballero E., Belnap J., Büdel B., Crutzen P.J., Andreae M.O., Pöschl U., Weber B. Dryland photoautotrophic soil surface communities endangered by global change // Nature Geosci. 2018. V. 11. P. 185–189.
  70. Sawada K. Mechanism of crystallization and transformation of calcium carbonates // Pure Appl. Chem. 1997. V. 69. P. 921–928.
  71. Sowoidnich K., Vogel S., Maiwald M., Sumpf B. Determination of soil constituents using shifted excitation Raman difference spectroscopy // Appl. Spectroscopy. 2022. V. 76. P. 712–722.
  72. Sparavigna A.C. Raman Spectroscopy of the Iron Oxides in the Form of Minerals, Particles and Nanoparticles // ChemRxiv. 2023.
  73. Sun H.J., Friedmann E.I. Growth on geological time scales in the Antarctic cryptoendolithic microbial community // Geomicrobiol. J. 1999. V. 16. P. 193–202.
  74. Thomazo C., Couradeau E., Giraldo-Silva A., Marin-Carbonne J., Brayard A., Homann M. et al. Biological soil crusts as modern analogs for the Archean continental biosphere: insights from carbon and nitrogen isotopes // Astrobiology. 2020. V. 20. P. 815–819.
  75. Tucker M.E., Jones S.J. Sedimentary petrology. John Wiley & Sons Ltd, 2023. 448 p.
  76. Urmos J., Sharma S.K., Mackenzie F.T. Characterization of some biogenic carbonates with Raman spectroscopy // American Mineralogist. 1991. V. 76. P. 641–646.
  77. van Breemen N., Lundström U.S., Jongmans A.G. Do plants drive podzolization via rock-eating mycorrhizal fungi? // Geoderma. 2000. V. 94. P. 163–171.
  78. Villar S.E.J., Edwards H.G., Cockell C.S. Raman spectroscopy of endoliths from Antarctic cold desert environments // Analyst. 2005. V. 130. P. 156–162.
  79. Vítek P., Ascaso C., Artieda O., Casero M.C., Wierzchos J. Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert // Scientific Reports. 2017. V. 7. P. 11116.
  80. Vítek P., Ascaso C., Artieda O., Wierzchos J. Carotenoids dispersed in gypsum rock as a result of algae adaptation to the extreme conditions of the Atacama Desert // Scientific Reports. 2024. V. 14. P. 23939.
  81. Vogel E., Geßner R., Hayes M.H.B., Kiefer W. Characterisation of humic acid by means of SERS // J. Molecular Structure. 1999. V. 482. P. 195–199.
  82. Zhu G., Yang Y., Liu J., Liu F., Lu A., He W. Enhanced photocurrent production by the synergy of hematite nanowire–arrayed photoanode and bioengineered Shewanella oneidensis MR–1 // Biosensors and Bioelectronics. 2017. V. 94. P. 227–234.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».