Modelling of long-term C sequestration on arable chernozem: integrated effects of fertilization and tillage
- Authors: Husniev I.T.1, Sitnikov V.N.2, Esaulko A.N.2, Yakimenko O.S.1, Romanenkov V.A.1,3
-
Affiliations:
- Lomonosov Moscow State University
- Stavropol State Agrarian University
- All-Russian Research Institute of Agrochemistry
- Issue: No 11 (2025)
- Pages: 1534-1547
- Section: АГРОХИМИЯ И ПЛОДОРОДИЕ ПОЧВ
- URL: https://journals.rcsi.science/0032-180X/article/view/352054
- DOI: https://doi.org/10.7868/S3034561825110113
- ID: 352054
Cite item
Abstract
About the authors
I. T. Husniev
Lomonosov Moscow State University
Email: husniev.ilshat@gmail.com
Moscow, 119991 Russia
V. N. Sitnikov
Stavropol State Agrarian UniversityStavropol, 355017 Russia
A. N. Esaulko
Stavropol State Agrarian UniversityStavropol, 355017 Russia
O. S. Yakimenko
Lomonosov Moscow State UniversityMoscow, 119991 Russia
V. A. Romanenkov
Lomonosov Moscow State University; All-Russian Research Institute of AgrochemistryMoscow, 119991 Russia; Moscow, 127434 Russia
References
- Агеев В.В., Демкин В.А. Программирование урожайности. Ставрополь, 1991. 120 с.
- Гречишкина Ю.И. Сохранение и воспроизводство плодородия черноземных почв для повышения продуктивности агроценозов Центрального Предкавказья. Дис. … докт. с./х. наук. М., 2020. 469 с.
- Есаулко А.Н., Петрова Л.Н., Агеев В.В. Повышение эффективности применения удобрений на основе оптимизации систем удобрения в севооборотах Центрального Предкавказья (к 40–летию стационара СтГАУ) // Плодородие. 2017. № 94. С. 8–11.
- Левин Ф.И. Количество растительных остатков в посевах полевых культур и его определение по урожаю основной продукции // Агрохимия. 1977. № 8. С. 36–42.
- Хусниев И.Т., Романенков В.А., Пасько С.В., Ильичев И.А. Агротехнологический потенциал управления органическим углеродом черноземов обыкновенных в зернопаропропашном севообороте // Российская сельскохозяйственная наука. 2022. № 3. С. 38–44. https://doi.org/10.31857/S2500262722030085.
- Angers D.A., Eriksen-Hamel N.S. Full-inversion tillage and organic carbon distribution in soil profiles: a meta-analysis // Soil Sci. Soc. Am. J. 2008. V. 72. P. 1370–1374. https://doi.org/10.2136/ sssaj2007.0342
- Bolinder M.A., Crotty F., Elsen A., Frac M., Kismányoky T., Lipiec J. et al. The effect of crop residues, cover crops, manures and nitrogen fertilization on soil organic carbon changes in agroecosystems: a synthesis of reviews // Mitigation and Adaptation Strategies for Global Change. 2020. V. 25. P. 929–952.
- Chenu C., Angers D.A., Barré P., Derrien D., Arrouays D., Balesdent J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations // Soil Till. Res. 2019. V. 188. P. 41–52. https://doi.org/10.1016/j.still.2018.04.011
- Du Z., Angers D.A., Ren T., Zhang Q., Li G. The effect of no-till on organic C storage in Chinese soils should not be overemphasized: a meta-analysis // Agriculture, Ecosystems Environ. 2017. V. 236. P. 1–11. https://doi.org/10.1016/j.agee.2016.11.007
- FAO. Technical Specifications and Country Guidelines for Global Soil Organic Carbon Sequestration Potential Map (GSOCseq). FAO, Rome, 2020.
- Franko U. Modeling approaches of soil organic carbon turnover within the CANDY system // Evaluation of Soil Organic Matter Models: Using Existing Long-Term Datasets. 1996. V. 38. P. 247–254.
- Franko U., Schramm G., Rodionova V., Körschens M., Smith P., Coleman K., Romanenkov V., Shevtsova L. EuroSOMNET – a database for long-term experiments on soil organic matter in Europe // Computers and Electronics in Agriculture. 2002. V. 33. P. 233–239. https://doi.org/10.1016/S0168-1699(02)00009-1
- Haddaway N.R., Hedlund K., Jackson L.E., Kätterer T., Lugato E., Thomsen I.K., Jørgensen H.B., Isberg P.-E. How does tillage intensity affect soil organic carbon? A systematic review protocol // Environ Evid. 2016. V. 5. P. 1. https://doi.org/10.1186/s13750–016-0052-0
- Haddaway N.R., Hedlund K., Jackson L.E., Kätterer T., Lugato E., Thomsen I.K., Jørgensen H. B., Isberg P.-E. How does tillage intensity affect soil organic carbon? A systematic review // Environ. Evid. 2017. V. 6. P. 30. https://doi.org/10.1186/s13750– 017-0108-9
- Heimann M., Reichstein M. Terrestrial ecosystem carbon dynamics and climate feedbacks // Nature. 2008. V. 451(7176). P. 289–292. https://doi.org/10.1038/nature06591
- Hidy D., Barcza Z., Marjanović H., et al. Terrestrial ecosystem process model Biome-BGCMuSo v4.0: summary of improvements and new modeling possibilities // Geosci. Model Dev. 2016. V. 9. P. 4405–4437. https://doi.org/10.5194/gmd-9-4405-2016
- Huang S., Zeng Y., Wu J., Shi Q., Pan X. Effect of crop residue retention on rice yield in China: a meta-analysis // Field Crops Research. 2013. V. 154. P. 188–194.
- Husniev I., Romanenkov V., Minakova O., Krasilnikov P. Modelling and prediction of organic carbon dynamics in arable soils based on a 62-year field experiment in the Voronezh Region, European Russia // Agronomy. 2020. V. 10. P. 1607. https://doi.org/10.3390/agronomy10101607
- Husniev I., Romanenkov V., Siptits S., Pavlova V., Pasko S., Yakimenko O., Krasilnikov P. Perspectives on effective long-term management of carbon stocks in chernozem under future climate conditions // Agriculture. 2023. V. 13. P. 1901. https://doi.org/10.3390/agriculture13101901
- Jenkinson D.S., Hart P.B.S., Rayner J.H., Parry LC. Modeling the turnover of organic matter in long-term experiments // Intecol. 1987. V. 15. P. 1–8.
- Khusniev I.T., Romanenkov V.A., Pasko S.V., Ilyichev I.A. Agrotechnological potential of organic carbon management in grain-fallow crop rotation on ordinary chernozems // Russ. Agricult. Sci. 2022. V. 48. P. 276–282. https://doi.org/10.3103/S1068367422040073
- Lembaid I., Moussadek R., Mrabet R., Douaik A., Bouhaouss A. Modeling the effects of farming management practices on soil organic carbon stock under two tillage practices in a semi-arid region, Morocco // Heliyon. 2021. V. 7. https://doi.org/10.1016/j.heliyon.2020.e05889
- Li C., Aber J., Stange F., Butterbach-Bahl K., Papen H. A model of nitrous oxide evolution driven from soil driven by rainfall events: 1. Model structure and sensitivity // J. Geophys. Res.: Atmospheres. 1992. V. 97. P. 9759–9776.
- Lu X. A meta-analysis of the effects of crop residue return on crop yields and water use efficiency // PLoS One. 2020. V. 15. P. e0231740. https://doi.org/10.1371/journal.pone.0231740
- Luo Z., Wang E., Sun O. J. Can no-tillage stimulate carbon sequestration in agricultural soils? A meta-analysis of paired experiments // Agriculture, Ecosystems Environ. 2010. V. 139. P. 224–231. https://doi.org/10.1016/j.agee.2010.08.006
- Meurer K.H.E., Haddaway N.R., Bolinder M.A., Kätterer T. Tillage intensity affects total SOC stocks in boreo-temperate regions only in the topsoil – A systematic review using an ESM approach // Earth-Sci. Rev. 2018. V. 177. P. 613–622. https://doi.org/10.1016/j.earsc irev.2017.12.015
- Parton W.J., Mosier A.R., Ojima D.S. Generalized model for N2 and N2O production from nitrification and denification // Global Biogeochem. 1996. V. 10. P. 401–412.
- Pavlova V., Shkolnik I., Pikaleva A., Efimov S., Karachenkova A., Kattsov V. // Future changes in spring wheat yield in the European Russia as inferred from a large ensemble of high-resolution climate projections // Environ. Res. Lett. 2019. V. 14. P. 034010. https://doi.org/10.1088/1748-9326/aaf8be
- Poirier V., Angers D.A., Rochette P., Chantigny M.H., Ziadi N., Tremblay G., Fortin J. Interactive effects of tillage and mineral fertilization on soil carbon profiles // Soil Sci. Soc. Am. J. 2009. V. 73. P. 255. https://doi.org/10.2136/sssaj2008.0006
- Smith P., Smith J.U., Powlson D.S., McGill W.B., Arah J.R.M. et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments // Geoderma. 1997. V. 81. P. 153-225. https://doi.org/10.1016/S0016-7061(97)00087-6
- Stocker T.F., Qin D., Plattner G.-K., Tignor M.M.B., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of IPCC the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Pres, 2014. P. 1535. https://doi.org/10.1017/CBO9781107415324
- Virto I., Barré P., Burlot A., Chenu C. Carbon input differences as the main factor explaining the variability in soil organic C storage in no-tilled compared to inversion tilled agrosystems // Biogeochemistry. 2012. V. 108. P. 17–26. https://doi.org/10.1007/s10533-011-9600–4
- Young M.D., Ros G.H., de Vries W. Impacts of agronomic measures on crop, soil, and environmental indicators: A review and synthesis of meta-analysis // Agriculture, Ecosystems Environ. V. 319. P. 107551.
Supplementary files


