Formation and functioning of prokaryotic complexes in oil-contaminated soils with the application of biochar
- Authors: Uvarov G.V.1,2, Manucharova N.A.1, Gaev K.G.1, Fortova S.M.1, Zavgorodnyaya Y.A.1, Pavlov K.V.1, Lipatov D.N.1, Stepanov A.L.1
-
Affiliations:
- Lomonosov Moscow State University
- Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
- Issue: No 11 (2025)
- Pages: 1507-1518
- Section: SOIL BIOLOGY
- URL: https://journals.rcsi.science/0032-180X/article/view/352052
- DOI: https://doi.org/10.7868/S3034561825110095
- ID: 352052
Cite item
Abstract
About the authors
G. V. Uvarov
Lomonosov Moscow State University; Russian State Agrarian University – Moscow Timiryazev Agricultural Academy
Email: georgu98@yandex.ru
Moscow, 119991 Russia; Moscow, 107996 Russia
N. A. Manucharova
Lomonosov Moscow State University
Email: manucharova@mail.ru
Moscow, 119991 Russia
K. G. Gaev
Lomonosov Moscow State UniversityMoscow, 119991 Russia
S. M. Fortova
Lomonosov Moscow State UniversityMoscow, 119991 Russia
Y. A. Zavgorodnyaya
Lomonosov Moscow State UniversityMoscow, 119991 Russia
K. V. Pavlov
Lomonosov Moscow State UniversityMoscow, 119991 Russia
D. N. Lipatov
Lomonosov Moscow State UniversityMoscow, 119991 Russia
A. L. Stepanov
Lomonosov Moscow State UniversityMoscow, 119991 Russia
References
- Гальцова А.Д., Кинжаев Р.Р., Арзамазова А.В., Романенков В.А. Оценка эффективности различных форм азотных удобрений при выращивании растений-ремедиантов на нефтезагрязненном черноземе типичном // Вестник Моск. ун-та. Сер. 17, почвоведение. 2024. Т. 79. № 1. С. 33–41. http://doi.org/10.55959/msu0137-0944-17-2024-79-1-33-41
- Завгородняя Ю.А., Бочарова Е.А., Кольцов Г.И. Определение уровня загрязнения почв методом автоматизированной ускоренной экстракции в субкритических условиях // Экология и промышленность России. 2012. № 2. С. 30–33. http://doi.org/10.18412/1816-0395-2012-2-30-33
- Иванов А.И., Иванова Ж.А., Соколов И.В., Вязовский А.А. Биоуголь в технологиях освоения закустаренной залежи // Агрохимический вестник. 2020. № 2. С. 21–26. https://doi.org/10.24411/1029-2551-2020-10017
- Классификация и диагностика почв России. Смоленск: Ойкумена, 2004. 342 с.
- Классификация и диагностика почв СССР. М.: Колос, 1977. 223 с.
- Красильников П.В. Устойчивые соединения углерода в почвах: происхождение и функции // Почвоведение. 2015. № 9. С. 1131–1144.
- Манучарова Н.А., Ксенофонтова Н.А., Каримов Т.Д., Власова А.П., Зенова Г.М., Степанов А.Л. Изменение филогенетической структуры метаболически активного прокариотного комплекса почв под влиянием нефтяного загрязнения // Микробиология. 2020. № 89. С. 222–234. https://doi.org/10.31857/S0026365620020093
- Назина Т.Н., Соколова Д.Ш., Бабич Т.Л., Семенова Е.М., Борзенков И.А., Биджиева С.Х., Меркель А.Ю., Хисаметдинов М.Р., Турова Т.П. Филогенетическое разнообразие микроорганизмов осадка биогазового реактора, перерабатывающего нефтесодержащие и муниципальные отходы // Микробиология. 2018. Т. 87. № 3. С. 314–324. https://doi.org/10.7868/S0026365618030096
- Полянская Л.М., Гейдебрехт В.В., Степанов А.Л., Звягинцев Д.Г. Распределение численности и биомассы микроорганизмов по профилям зональных типов почв // Почвоведение. 1995. № 2. С. 322–328.
- Смагин А.В., Садовникова Н.Б., Мизури М.Б.А. Определение основной гидрофизической характеристики почв методом центрифугирования // Почвоведение. 1998. № 11. С. 1362–1370.
- Современные методы исследования нефтей / Под ред. Богомолова А.И. и др. Л.: Недра, 1984. 431 с.
- Узких О.С., Хомяков Д.М., Донерьян Л.Г. Чувствительность биологических показателей к уровням нефтяного загрязнения на различных типах почв // Защита окружающей среды в нефтегазовом комплексе. 2009. № 3. С. 36–39.
- Яковлев А.С. Допустимое экологическое состояние почв и антропогенное воздействие как основа их экологического нормирования и управления качеством // Экологическое нормирование и управление качеством почв и земель. М.: НИА-Природа, 2013. 310 с.
- Ahmad M., Lee S.S., Lee S.E., Al-Wabel M.I., Tsang D.C.W., Ok Y.S. Biochar-induced changes in soil properties affected immobilization/mobilization of metals/metalloids in contaminated soils // J. Soils Sediments. 2017. V. 17. P. 717–730. https://doi.org/10.1007/s11368-015-1339-4
- Ali N., Khan S., Yao H., Wang J. Biochars reduced the bioaccessibility and (bio)uptake of organochlorine pesticides and changed the microbial community dynamics in agricultural soils // Chemosphere. 2019. V. 224. P. 805–815. https://doi.org/10.1016/j.chemosphere.2019.02.163
- Anae J., Ahmad N., Kumar V., Thakur V.K., Gutierrez T., Yang X.J., Cai C., Yang Z., Coulon F. Recent advances in biochar engineering for soil contaminated with complex chemical mixtures: Remediation strategies and future perspectives // Sci. Total Environ. 2021. V. 767. P. 144351. https://doi.org/10.1016/j.scitotenv.2020.144351
- Anawar H.M., Akter F., Solaiman Z.M., Strezov V. Biochar: An Emerging Panacea for Remediation of Soil Contaminants from Mining, Industry and Sewage Wastes // Pedosphere. 2015. V. 5. P. 654–665. https://doi.org/10.1016/S1002-0160(15)30046-1
- Bashir S., Shaaban M., Mehmood S., Zhu J., Fu Q., Hu H. Efficiency of C3 and C4 Plant Derived-Biochar for Cd Mobility, Nutrient Cycling and Microbial Biomass in Contaminated Soil // Bull. Environ. Contamination Toxicol. 2018. V. 100. P. 834–838. https://doi.org/10.1007/s00128-018-2332-6
- Cerniglia C.E. Microbial metabolism of polycyclic aromatic hydrocarbons // Adv. Appl. Microbiol. 1984. V. 30. P. 31–71. https://doi.org/10.1016/S0065-2164(08)70052-2
- Chaudhary H., Rao K. S. Impact of biochar produced at different pyrolysis conditions on heavy metal contaminated soil // Environ. Geochem. Health. 2024. V. 46. P. 307. https://doi.org/10.1007/s10653-024-02092-2
- Çiğ F., Erman M., Cerıtoğlu M. Combined application of microbial inoculation and biochar to mitigate drought stress in wheat // J. Institute Sci. Technol. 2021. V. 11. P. 3528–3538. http://dx.doi.org/10.21597/jist.991486
- Gelardi D.L., Ainuddin I., Rippner D.A. Biochar alters hydraulic conductivity and impacts nutrient leaching in two agricultural soils // Soil. 2021. V. 7. P. 811–825. https://doi.org/10.5194/soil-7-811-2021
- George K.W., Hay A.G. Bacterial strategies for growth on aromatic compounds // Adv. Appl. Microbiol. 2011. V. 74. P. 1–33. https://doi.org/10.1016/B978-0-12-387022-3.00005-7
- Haghollahi A., Fazaelipoor M.H., Schaffie M. The effect of soil type on the bioremediation of petroleum contaminated soils // J. Environ. Manag. 2016. V. 180. P. 197–201. https://doi.org/10.1016/j.jenvman.2016.05.038
- Hendrickx B., Junca H., Vosahlova J., Lindner A., Rüegg I., Bucheli-Witschel M., Faber F. et al. Alternative primer sets for PCR detection of genotypes involved in bacterial aerobic BTEX degradation: distribution of the genes in BTEX degrading isolates and in subsurface soils of a BTEX contaminated industrial site // J. Microbiol. Methods. 2006. V. 64. Р. 250–265. https://doi.org/10.1016/j.mimet.2005.04.018
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014: International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 2014. 181 p.
- Khorram M.S., Zhang Q., Lin D., Zheng Y., Fang H. and Yu Y. Biochar: A review of its impact on pesticide behavior in soil environments and its potential applications // J. Environ. Sci. 2016. V. 44. P. 269–279. http://doi.org/10.1016/j.jes.2015.12.027
- Kim H.S., Kim K.R., Ok Y.S., Lee Y.K., Kluge B., Wessolek G., Kim W.I., Kim K.-H. Examination of three different organic waste biochars as soil amendment for metal-contaminated agricultural soils // Water Air. Soil. Pollut. 2015. V. 226. P. 282. https://doi.org/10.1007/s11270-015-2556-6
- Kocsis T., Biró B., Ulmer Á., Szántó1 M., Kotroczó Z. Time-lapse effect of ancient plant coal biochar on some soil agrochemical parameters and soil characteristics // Environ. Sci. Pollut. Res. 2018. V. 25. P. 990–999. http://doi.org/10.1007/s11356-017-8707-0
- Kocsis T., Ringer M., Biró B. Characteristics and applications of biochar in soil–plant systems: a short review of benefits and potential drawbacks // Appl. Sci. 2022. V. 12. P. 4051. http://doi.org/10.3390/app12084051
- Kookana R.S. The role of biochar in modifying the environmental fate, bioavailability, and efficacy of pesticides in soils; a review // Soil Res. 2010. V. 48. P. 627–637. http://doi.org/10.1071/SR10007
- Kookana R.S., Sarmarh A.K., Van Zwieten L., Krull E., Singh B. Biochar application to soil: agronomic and environmental benefits and unintended consequences // Adv. Agron. 2011. V. 112. P. 103–143. https://doi.org/10.1016/B978-0-12-385538-1.00003-2
- Karlapudi A.P., Venkateswarulu, T.C., Tammineedi J., Kanumuri L., Ravuru B.K., ramu Dirisala V., Kodali V.P. Role of biosurfactants in bioremediation of oil pollution-a review // Petroleum. 2018. V. 4. P. 241–249. https://doi.org/10.1016/j.petlm.2018.03.007
- Kukor J.J., Olsen R.H. Catechol 2,3-dioxygenases functional in oxygen-limited (hypoxic) environments // Appl. Environ. Microbiol. 1996. V. 62. P. 1728–1740. https://doi.org/10.1128/aem.62.5.1728-1740.1996
- Kuppusamy S., Thavamani P., Megharaj M., Venkateswarlu K., Naidu R. Agronomic and remedial benefits and risks of applying biochar to soil: Current knowledge and future research directions // Environ. Int. 2016. V. 87. P. 1–12. https://doi.org/10.1016/j.envint.2015.10.018
- Lehmann J., Rillig M.C., Thies J., Masiello C.A., Hockaday W.C., Crowley D. Biochar effects on soil biota – A review // Soil Biol. Biochem. 2011. V. 43. P. 1812–1836. https://doi.org/10.1016/j.soilbio.2011.04.022
- Liu Q., He W., Zhang W., Wang L., Tang J. Metagenomic analysis reveals the microbial response to petroleum contamination in oilfield soils // Sci. Total Environ. 2024. V. 912. P. 168972. https://doi.org/10.1016/j.scitotenv.2023.168972
- Mohamed B.A., Ellis N., Kim C.S., Bi X. The role of tailored biochar in increasing plant growth, and reducing bioavailability, phytotoxicity, and uptake of heavy metals in contaminated soil // Environ. Poll. 2017. V. 230. P. 329–338. https://doi.org/10.1016/j.envpol.2017.06.075
- Mukhina I., Rizhiya E., Bankina T. Biochar Effect on Nutrients Availability to Barley // Environ. Res. Engineering Manag. 2020. V. 76 P. 43–53. http://doi.org/10.5755/j01.erem.76.2.21854
- Mukhina I.M., Rizhiya E.Y., Buchkina N.P., Balashov E.V. et al. Changes in soil conditions after application of biochar // IOP Conf. Series: Earth Environ. Sci. 2019. V. 368. P. 012037. http://doi.org/10.1088/1755-1315/368/1/012037
- Malyan S.K., Kumar S.S., Fagodiya R.K., Ghosh P., Kumar A., Singh R. et al. Biochar for environmental sustainability in the energy-water-agroecosystem nexus // Renew. Sustain. Energy. Rev. 2021. V. 149. P. 111379. https://doi.org/10.1016/j.rser.2021.111379
- Nejad Z.D., Jung M.C. Remediation of multi-metal contaminated soil using biochars from rice husk and maple leaves // J. Mater. Cycles Waste Manag. 2019. V. 21. P. 457–468. https://doi.org/10.1007/s10163-018-0805-7
- Nejad Z.D., Jung M.C. The effects of biochar and inorganic amendments on soil remediation in the presence of hyperaccumulator plant // Int. J. Energy. Environ. Eng. 2017. V. 8. P. 317–329. https://doi.org/10.1007/s40095-017-0250-8
- Orlova N., Abakumov E., Orlova E., Yakkonen K., Shahnazarova V. Soil organic matter alteration under biochar amendment: study in the incubation experiment on the Podzol soils of the Leningrad region (Russia) // J. Soils Sediments. 2019. V. 19. P. 2708–2716. https://doi.org/10.1007/s11368-019-02256-z
- Ren C., Guo D., Liu X., Li R., Zhang Z. Performance of the emerging biochar on the stabilization of potentially toxic metals in smelter- and mining-contaminated soils // Environ. Sci. Pollut. Res. 2020. V. 27. P. 43428–43438. https://doi.org/10.1007/s11356-020-07805-5
- Rúa-Díaz S., Forjan R., Lago-Vila M., Cerqueira B., Arco-Lázaro E., Marcet P., Baragaño D., Gallego J.L.R., Covelo E.F. Pyrolysis temperature influences the capacity of biochar to immobilize copper and arsenic in mining soil remediation // Environ. Sci. Pollut. Res. 2023. V. 30. P. 32882–32893. https://doi.org/10.1007/s11356-022-24492-6
- Semenyuk N.N., Yatsenko V.S., Strijakova E.R., Filonov A.E., Petrikov K.V., Zavgorodnyaya Yu.A., Vasilyeva G.K. Effect of activated charcoal on bioremediation of diesel fuel-contaminated soil // Microbiology. 2014. V. 83. P. 589–598. http://dx.doi.org/10.1134/S0026261714050221
- Shen X., Huang D.-Y., Ren X.-F., Zhu H.-H., Wang S., Xu C., He Y.-B., Luo Z.-C., Zhu Q.-H. Phytoavailability of Cd and Pb in crop straw biochar-amended soil is related to the heavy metal content of both biochar and soil // J. Environ. Manag. 2016. V. 168. P. 245–251. https://doi.org/10.1016/j.jenvman.2015.12.019
- Tang J., Zhu W., Kookana R., Katayama A. Characteristics of biochar and its application in remediation of contaminated soil // J. Biosci. Bioeng. 2013. V. 6. P. 653–659. https://doi.org/10.1016/j.jbiosc.2013.05.035
- Vaillancourt F.H., Bolin J.T., Eltis L.D. The ins and outs of ring-cleaving dioxygenases // Crit. Rev. Biochem. Mol. Biol. 2006. V. 41. P. 241–267. https://doi.org/10.1080/10409230600817422
- Whyte L.G., Smits T.H.M., Labbe D., Witholt B., Greer C.W., van Beilen J.B. Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531 // Appl. Environ. Microbiol. 2002. V. 68. P. 5933–5942. https://doi.org/10.1128/AEM.68.12.5933-5942.2002
- Woolley S., Hallowell B. Biochar: An Overview. 2018. https://biomasscontrols.com/wpcontent/uploads/2019/01/BiocharOverview_2.18_v2.pdf
- Zafar-ul-Hye M., Danish S., Abbas M., Ahmad M., Munir T.M. ACC deaminase producing PGPR Bacillus amyloliquefaciens and Agrobacterium fabrum along with Biochar improve wheat productivity under drought stress // Agronomy. 2019. V. 9. P. 343. http://doi.org/10.3390/agronomy9070343
- Zhang J.J., Shen J.-L. Effects of biochar on soil microbial diversity and community structure in clay soil // Ann. Microbiol. 2022. V. 72. P. 32.
Supplementary files


