Effect of Mineral Nitrogen and Glucose Application on Temperature Sensitivity (Q10) of Mineralization of Soil Organic Matter

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The temperature sensitivity of C mineralization in the soils of two ecosystems was studied: a forest glade and a dead cover pine forest. It is shown that the temperature sensitivity is higher in the forest glade than in the pine forest and increases down the soil profile. Soil depth was found to be the strongest determinant of Q10 variation. The application of nitrogen (NH4NO3) increased Q10 in the upper soil horizons, and the application of glucose, on the contrary, decreased Q10 in both ecosystems, the effect of glucose was most pronounced in the lower horizons. The co-application of glucose and nitrogen affected Q10 as well as the addition of glucose alone, indicating that the availability of a readily degradable substrate is a stronger factor influencing temperature sensitivity than nitrogen. The data obtained make it possible to predict the change in the contribution of the heterotrophic component of CO2 emission from soils during global warming and an increase in the influx of living root inputs, phytodetritus and exogenous nitrogen into the soil.

About the authors

А. I. Matvienko

Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”

Author for correspondence.
Email: matvienko.ai@ksc.krasn.ru
Russia, 660036, Krasnoyarsk

M. S. Gromova

Sukachev Institute of Forest SB RAS, Federal Research Center “Krasnoyarsk Science Center SB RAS”

Email: matvienko.ai@ksc.krasn.ru
Russia, 660036, Krasnoyarsk

O. V. Menyailo

Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Soil and Water Management
and Crop Nutrition Laboratory

Email: matvienko.ai@ksc.krasn.ru
Austria, 2444, Seibersdorf

References

  1. Громова М.С., Матвиенко А.И., Макаров М.И., Ченг Ш.К., Меняйло О.В. Температурная чувствительность (Q10) базального дыхания как функция количества доступного углеродного субстрата, температуры и влажности // Почвоведение. 2020. № 3. С. 366–371.
  2. Каганов В.В., Курганова И.Н. Оценка скорости минерализации органического вещества основных типов почв европейской части России при различных температурных режимах // Региональные геосистемы. 2011. Т. 16. № 15. С. 145–153.
  3. Ларионова А.А., Квиткина А.К., Евдокимов И.В., Быховец С.С., Стулин А.Ф. Влияние температуры на интенсивность разложения лабильного и устойчивого органического вещества агрочернозема // Почвоведение. 2013. № 7. С. 803.
  4. Меняйло О.В., Матвиенко А.И., Макаров М.И., Ченг Ш.К. Роль азота в регуляции цикла углерода в лесных экосистемах // Лесоведение. 2018. № 2. С. 143–159.
  5. Солодовников А.Н., Рожков В.А. Исследование влияния древесной породы на почву методом дискриминантного анализа // Бюл. Почв. ин-та им. В.В. Докучаева. 2019. № 96. С. 22–46.
  6. Тархов М.О., Матышак Г.В., Рыжова И.М., Гончарова О.Ю., Бобрик А.А., Петров Д.Г., Петржик Н.М. Температурная чувствительность дыхания почв бугристых торфяников севера Западной Сибири // Почвоведение. 2019. № 8. С. 946–955.
  7. Тонконогов В.Д., Герасимова М.И., Лебедева И.И. Классификация почв России: 1997–2004–2008 // Ґрунтознавство. 2008. № 9. С. 142–146.
  8. Chen J., Luo Y., Li J., Zhou X., Cao J., Wang R.W. et al. Costimulation of soil glycosidase activity and soil respiration by nitrogen addition // Global Change Biology. 2017. V. 23. № 3. P. 1328–1337.
  9. Craine J.M., Fierer N., McLauchlan K.K. Widespread coupling between the rate and temperature sensitivity of organic matter decay // Nature Geoscience. 2010. V. 3. № 12. P. 854–857.
  10. Davidson E.A., Janssens I.A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change // Nature. 2006. V. 440. P. 166–169.
  11. Fang C., Moncrieff J.B. The dependence of soil CO2 efflux on temperature // Soil Biol. Biochem. 2001. V. 33. № 2. P. 155–165.
  12. Janssens I.A., Dieleman W., Luyssaert S., Subke J.A., Reichstein M., Ceulemans R. et al. Reduction of forest soil respiration in response to nitrogen deposition // Nature geoscience. 2010. V. 3. № 5. P. 315–322.
  13. Karhu K., Alaei S., Li J., Merilä P., Ostonen I., Bengtson P. Microbial carbon use efficiency and priming of soil organic matter mineralization by glucose additions in boreal forest soils with different C : N ratios // Soil Biol. Biochem. 2022. V. 167. P. 108615.
  14. Kuzyakov Y. Sources of CO2 efflux from soil and review of partitioning methods // Soil Biol. Biochem. 2006. V. 38. № 3. P. 425–448.
  15. Li J., Pei J., Pendall E., Reich P.B., Noh N.J., Li B. et al. Rising temperature may trigger deep soil carbon loss across forest ecosystems // Adv. Sci. 2020. V. 7. № 19. P. 2001242.
  16. Menyailo O.V., Huwe B. Denitrification and C, N mineralization as function of temperature and moisture potential in organic and mineral horizons of an acid spruce forest soil // J. Plant Nutrition Soil Sci. 1999. V. 162. № 5. P. 527–531.
  17. Menyailo O.V., Hungate B.A., Zech W. The effect of single tree species on soil microbial activities related to C and N cycling in the Siberian artificial afforestation experiment // Plant and Soil. 2002. V. 242. № 2. P. 183–196.
  18. Menyailo O.V., Hungate B.A., Zech W. Tree species mediated soil chemical changes in a Siberian artificial afforestation experiment // Plant and Soil. 2002. V. 242. № 2. P. 171–182.
  19. Patel K.F., Bond–Lamberty B., Jian J., Morris K.A., McKever S.A., Norris C.G. et al. Carbon flux estimates are sensitive to data source: a comparison of field and lab temperature sensitivity data // Environ. Res. Lett. 2022. V. 17. № 11. P. 113003.
  20. Phillips C.L., Nickerson N. Soil Respiration, Reference Module in Earth Systems and Environmental Sciences, Elsevier, 2015.
  21. Schädel C., Beem-Miller J., Aziz Rad M., Crow S.E., Hicks Pries C.E., Ernakovich J. et al. Decomposability of soil organic matter over time: The Soil Incubation Database (SIDb, version 1.0) and guidance for incubation procedures // Earth System Science Data. 2020. V. 12. № 3. P. 1511–1524.
  22. Shahzad T., Rashid M.I., Maire V., Barot S., Perveen N., Alvarez G. et al. Root penetration in deep soil layers stimulates mineralization of millennia-old organic carbon // Soil Biol. Biochem. 2018. V. 124. P. 150–160.
  23. Sokol N.W., Kuebbing S.E., Karlsen-AyalaE., Bradford M.A. Evidence for the primacy of living root inputs, not root or shoot litter, in forming soil organic carbon // New Phytologist. 2019. V. 221. № 1. P. 233–246.
  24. Uselman S.M., Qualls R.G., Thomas R.B. Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L) // Plant and soil. 2000. V. 222. № 1. P. 191–202.
  25. Yang Y., Li T., Pokharel P., Liu L., Qiao J., Wan Y. et al. Global effects on soil respiration and its temperature sensitivity depend on nitrogen addition rate // Soil Biol. Biochem. 2022. V. 174. P. 108814.
  26. Zak D.R., Pregitzer K.S., King J.S., Holmes W.E. Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesis // The New Phytologist. 2000. V. 147. № 1. P. 201–222.
  27. Zhao G., Zhang Y., Cong N., Zheng Z., Zhao B., Zhu J. et al. Climate warming weakens the negative effect of nitrogen addition on the microbial contribution to soil carbon pool in an alpine meadow // Catena. 2022. V. 217. P. 106513.
  28. Zhou L., Zhou X., Zhang B., Lu M., Luo Y., Liu L., Li B. Different responses of soil respiration and its components to nitrogen addition among biomes: a meta-analysis // Global change biology. 2014. V. 20. № 7. P. 2332–2343.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (340KB)
3.

Download (189KB)
4.

Download (429KB)

Copyright (c) 2023 А.И. Матвиенко, М.С. Громова, О.В. Меняйло

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies