Comparison of the Effectiveness of Micro- and Nanoparticles of Zero-Valent Iron in the Detoxification of Technogenic Polluted Soil

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We studied the safety of sorbents based on zerovalent iron in the form of micro- and nanoparticles and their detoxifying activity in peat eutrophic soil (Eutric Histosol) polluted by emissions from a copper-nickel (Cu/Ni) plant (Kola Peninsula, Russia). Iron nanoparticles, as well as iron microparticles at a dose of 2%, turned out to be non-toxic according to the results of three standard bioassays based on the reactions of test organisms of different taxonomic affiliation. Toxicity was assessed by the change in the length of the roots of seedlings of plants Sinapis alba L. in uncontaminated peat, by the survival of Ceriodaphnia affinis Lilljeborg and the protozoan Parameciun caudatum Ehrenberg in water extracts of the samples. Fe-containing preparations significantly reduced the ecotoxicity of the soil due to the extremely high content of copper (6877 mg/kg) and nickel (2580 mg/kg). Differences in the remediating ability of the preparations were revealed. According to the results of soil phytotesting, iron nanoparticles significantly outperformed the detoxifying effect of microparticles (iron powder). When analyzing the water extract, the superiority of nanoparticles in reducing soil toxicity was not found. The dependence of the assessment of the detoxifying ability of zerovalent iron nanoparticles on soil properties and the plant species used in phytotesting is discussed.

About the authors

Yu. D. Sergeeva

Lomonosov Moscow State University

Email: vterekhova@gmail.com
Russia, 119991, Moscow

A. P. Kiryushina

Institute of Ecology and Evolution, Russian Academy of Sciences

Email: vterekhova@gmail.com
Russia, 119071, Moscow

V. K. Calero

Peoples’ Friendship University of Russia

Email: vterekhova@gmail.com
Russia, 117198, Moscow

O. A. Fedorova

Lomonosov Moscow State University

Email: vterekhova@gmail.com
Russia, 119991, Moscow

V. A. Terekhova

Lomonosov Moscow State University; Institute of Ecology and Evolution, Russian Academy of Sciences

Author for correspondence.
Email: vterekhova@gmail.com
Russia, 119991, Moscow; Russia, 119071, Moscow

References

  1. Водяницкий Ю.Н., Ладонин Д.В., Савичев А.Т. Загрязнение почв тяжелыми металлами. М., 2012. 304 с.
  2. Ильин В.Б. Тяжелые металлы в системе почва-растение // Почвоведение. 2007. № 9. С. 112–119.
  3. Ильясова Р.Р., Гайнетдинова Ю.М., Массалимов И.А., Мустафин А.Г. Изучение сорбционных свойств наночастиц железосодержащего сорбента по отношению к ионам тяжелых металлов // Химическая физика. 2017. Т. 36. № 8. С. 90–93. https://doi.org/10.7868/S0207401X17080040
  4. Копцик Г.Н. Проблемы и перспективы фиторемедиации почв, загрязненных тяжелыми металлами (обзор литературы) // Почвоведение. 2014. № 9. С. 1113–1130.
  5. Куликова Н.А. Наночастицы серебра в почве: поступление, трансформация, токсичность (обзор) // Почвоведение. 2021. № 3. С. 304–319.
  6. Маслоброд С.Н., Миргород Ю.А., Бородина В.Г., Борщ Н.А. Влияние водных дисперсных систем с наночастицами серебра и меди на прорастание семян // Электронная обработка материалов. 2014. № 4. P. 103–112.
  7. Методика определения токсичности воды и водных вытяжек из почв, осадков сточных вод, отходов по смертности и изменению плодовитости цериодафний. ФР.1.39.2007.03221 (https://fgis.gost.ru/fundmetrology/registry/16)
  8. Методика определения токсичности отходов, почв, осадков сточных вод, сточных, поверхностных и грунтовых вод методом биотестирования с использованием равноресничных инфузорий Paramecium caudatum Ehrenberg. ФР.1.39.2006.02506/ПНД Ф 14.1:2:3.13-06/16.1:2.3:3.10-06.
  9. Методика измерений биологической активности почв, субстратов растений, гуминовых веществ методом биотестирования. Фитоскан-2. ФР.1.31.2020.38716.
  10. Плеханова И.О., Золотарева О.А., Тарасенко И.Д. Применение методов биотестирования при оценке экологического состояния почв // Вестник Моск. ун-та. Сер. 17, почвоведение. 2018. № 4. С. 36–46.
  11. Пукальчик М.А., Терехова В.А., Вавилова В.М., Карпухин М.М. Сравнение элюатных и контактных методов биотестирования при оценке почв, загрязненных тяжелыми металл(иод)ами // Почвоведение. 2019. № 4. С. 507–514. https://doi.org/10.1134/S0032180X19040117
  12. Терехова В.А., Гладкова М.М. Инженерные наноматериалы в почве: проблемы оценки их воздействия на живые организмы // Почвоведение. 2014. № 1. С. 82–90.
  13. Abd El-Azeem S.A.M., Ahmad M., Usman A.R.A., Oh S.E., Lee S.S., Ok Y.S. Changes of biochemical properties and heavy metal bioavailability in soil treated with natural liming materials // Environ. Earth Sci. 2013. V. 70. P. 3411–3420. https://doi.org/10.1007/s12665-013-2410-3
  14. Alam M.J., Sultana F., Iqbal M.T. Potential of iron nanoparticles to increase germination and growth of wheat seedling // J. Nanosci. Adv. Technol. 2015. V. 1. № 3. P. 14–20.
  15. Bae J., Li Y., Zhang J., Zhou X., Zhao F. et al. A 3D nanostructured hydrogel-framework-derived high-performance composite polymer lithium-ion electrolyte // Angewandte Chemie. 2018. V. 57(8). P. 2096–2100. https://doi.org/10.1002/anie.201710841
  16. Bardos P., Merly C., Kvapil P., Koschitzky H.P. Status of nanoremediation and its potential for future deployment: Risk-benefit and benchmarking appraisals // Remediation J. 2018. V. 28. № 3. P. 43–56.
  17. Beesley L., Jiménez E.M., Eyles J.L.G. Effects of biochar and green waste compost amendments on mobility, bioavailability and toxicity of inorganic and organic contaminants in a multi-element polluted soil // Environ. Pollut. 2010. V. 158. P. 2282–2287. https://doi.org/10.1016/j.envpol.2010.02.003
  18. Beesley L., Moreno-Jiménez E., Gomez-Eyles J.L., Harris E., Robinson B., Sizmur T. A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils // Environ. Poll. 2011. V. 159 № 12. P. 3269–3282. https://doi.org/10.1016/j.envpol.2011.07.023
  19. Ben-Moshe T., Frenk S., Dror I., Minz D., Berkowitz B. Effects of metal oxide nanoparticles on soil properties // Chemosphere. 2013. V. 90. № 2. P. 640-646. https://doi.org/10.1016/j.chemosphere.2012.09.018
  20. Blok C., Persoone G., Wever G. A practical and low cost microbiotest to assess the phytotoxic potential of growing media and soil // ISHS Acta Horticulturae. 2008. V. 779. P. 367–374.
  21. Bondarenko O., Juganson K., Ivask A. et al. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review // Arch. Toxicol. 2013. V. 87. P. 1181–1200. https://doi.org/10.1007/s00204-013-1079-4
  22. Bondarenko L., Terekhova V., Kahru A., Dzhardimalieva G., Kelbysheva E., Tropskaya N., Kydralieva, K. Sample preparation considerations for surface and crystalline properties and ecotoxicity of bare and silica-coated magnetite nanoparticles // RSC Adv. 2021.11. P. 32227–32235.
  23. Borggaard O.K., Holm P.E., Jensen J.K., Soleimani M., Strobel B.W. Cleaning heavy metal contaminated soil with soluble humic substances instead of synthetic polycarboxylic acids // Acta Agric. Scand. 2011. V. 61. P. 577–581. https://doi.org/10.1080/09064710.2010.515602
  24. Dovletyarova E.A., Fareeva O.S., Zhikharev A.P. et al. Choose your amendment wisely: Zero-valent iron nanoparticles offered no advantage over microparticles in a laboratory study on metal immobilization in a contaminated soil // App. Geochem. 2022. V. 143. P. 1053–1069.
  25. Galdames A., Ruiz-Rubio L., Orueta M., Sánchez-Arzalluz M., Vilas-Vilela J.L. Zero-Valent Iron Nanoparticles for Soil and Groundwater Remediation // Int. J. Environ. Res. Public Health. 2020. V. 17. P. 5817. https://doi.org/10.3390/ijerph17165817
  26. Gladkova M.M., Terekhova V.A. Engineered nanomaterials in soil: Sources of entry and migration pathways // Moscow University Soil Science Bulletin. 2013. V. 68. № 3. P. 29–134.
  27. Gong Y., Guo J., Li J., Zhu K. et al. Experimental realization of an intrinsic magnetic topological insulator // Chinese Phys. Lett. 2019. № 36. P. 076801.
  28. Jawed A., Pandey L.M. Application of bimetallic Al-doped ZnO nano-assembly for heavy metal removal and decontamination of wastewater // Water Sci. Technol 2019. V. 80. № 11. P. 2067–2078.
  29. Komárek M., Vaněk A., Ettler V. Chemical stabilization of metals and arsenic in contaminated soils using oxides – A review // Environ. Poll. 2013. V. 172. P. 9–22. https://doi.org/10.1016/j.envpol.2012.07.045
  30. Kukier U., Chaney R.L. Remediating Ni-phytotoxicity of contaminated Quarry muck soil using limestone and hydrous iron oxide // Can. J. Soil Sci. 2000. P. 581–593.
  31. Kukier U., Chaney R.L. In situ remediation of nickel phytotoxicity for different plant species // J. Plant Nutrition. 2004. P. 465-495. https://doi.org/10.1081/PLN-120028874
  32. Kydralieva K., Bondarenko L., Terekhova V., Chistyakova N., Patsaeva S., Rabinskiy L., Dzhardimalieva G. Characterization and bioactivity of magnetite-based nanocomposites // Materials Today. 2021. V. 34. P. 317–321.
  33. Lefevre E., Bossa N., Wiesner M.R., Gunsch C.K. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): behavior, transport and impacts on microbial communities // Sci. Total Environ. 2016. V. 565. P. 889–901
  34. Mueller N.C., Nowack B. Nanoparticles for Remediation: Solving Big Problems with Little Particles // Elements. 2010. V. 6. № 6. P. 395-400. https://doi.org/10.2113/gselements.6.6.395
  35. Mushtaq Y.K. Effect of nanoscale Fe3O4, TiO2 and carbon particles on cucumber seed germination // J. Environ. Sci. Health. A. 2011. V. 46. № 14. P. 1732–1735.
  36. Ngo Q.B., Dao T.H., Nguyen H.C., Tran X.T., Van Nguyen T., Khuu T.D., Huynh T.H. Effects of nanocrystalline powders (Fe, Co and Cu) on the germination, growth, crop yield and product quality of soybean (Vietnamese species DT-51) // Adv. Natural Sci.: Nanosci. Nanotechnol. 2014. V. 5. № 1. P. 015016.
  37. Patil S.S., Shedbalkar U.U., Truskewycz A., Chopade B.A., Ball A.S. Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions // Environ. Technol. Innovat. 2016. V. 5. P. 10–21. https://doi.org/10.1016/j.eti.2015.11.001
  38. Plekhanova I.O., Zolotareva O.A., Tarasenko I.D. Application of Biotesting Methods at Assessment of Ecological State of Soils // Moscow University Soil Science Bulletin. 2018. V. 73. № 4. P. 163–173.
  39. Prudnikova E.V., Neaman A., Terekhova V.A., Karpukhin M.M., Vorobeichik E.L., Smorkalov I.A., Dovletyarova E.A., Navarro-Villarroel K., Ginocchio R., Peñaloza P. Root elongation method for the quality assessment of metal-polluted soils: Whole soil or soil-water extract? // J. Plant Nutrition Soil Sci. 2020. № 20. P. 2294–2303. https://doi.org/10.1007/s42729-020-00295-x
  40. Pukalchik M., Kydralieva K., Yakimenko O., Fedoseeva E., Terekhova V. Outlining the potential role of humic products in modifying biological properties of the soil – a review // Frontiers Environ. Sci. 2019. № 7. https://doi.org/10.3389/fenvs.2019.00080
  41. Pukalchik M., Merc F., Terekhova V.A., Tlustos P. Biochar, wood ash, and humic substances mitigating trace elements stress in contaminated sandy loam soil: evidence from an integrative approach // Chemosphere. 2018. V. 203. P. 228–238. https://doi.org/10.1016/j.chemosphere.2018.03.181
  42. Pukalchik M.A., Terekhova V.A., Karpukhin M.M., Vavilova V.M. Comparison of Eluate and Direct Soil Bioassay Methods of Soil Assessment in the Case of Contamination with Heavy Metals // Eurasian Soil Sci. 2019. T. 52. № 4. C. 464–470. https://doi.org/10.1134/S1064229319040112
  43. Qian Y., Qin C., Chen M., Lin S. Nanotechnology in soil remediation – applications vs. implications // Ecotoxicology and Environmental Safety. 2020. № 201. P. 110815.
  44. Rajput V.D., Minkina T.M, Sushkova S.N. et al. Effects of zinc-oxide nanoparticles on soil, plants, animals and soil organisms: A review // Environmental Nanotechnology, Monitoring and Management. 2018. V. 9. P. 76–84. https://doi.org/10.1016/j.enmm.2017.12.006
  45. Rizwan M., Ali S., Ali B., Adrees M., Arshad M., Hussain A., ur Rehman M.Z., Waris A.A. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat // Chemosphere. 2019. № 214. P. 269–277.
  46. Sayali S. Patil, Utkarsha U. Shedbalkar, Adam Truskewycz, Balu A. Chopade, Andrew S. Ball Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions // Environ. Technol. Innovat. 2016. V. 5. P. 10–21. https://doi.org/10.1016/j.eti.2015.11.001
  47. Semerád J., Ševců A., Nguyen N.H.A. et al. Discovering the potential of an nZVI-biochar composite as a material for the nanobioremediation of chlorinated solvents in groundwater: Degradation efficiency and effect on resident microorganisms // Chemosphere. 2021. V. 281. P. 1309–1315. https://doi.org/10.1016/j.chemosphere.2021.130915
  48. Slukovskaya M.V., Vasenev V.I., Ivashchenko K.V. et al. Organic matter accumulation by alkaline-constructed soils in heavily metal-polluted area of Subarctic zone // J. Soils Sediments. 2021. P. 2071–2088. https://doi.org/10.1007/s11368-020-02666-4
  49. Sun, Q.H., Horton R.M., Bader D.A., Jones B., Zhou L., Li T.T. Projections of temperature-related non-accidental mortality in Nanjing, China // Biomed. Environ. Sci. 2019. V. 32. № 2. P. 134–139. https://doi.org/10.3967/bes2019.019
  50. Wuana R.A., Okieimen F.E. Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation // ISRN Ecology. 2011. P. 1–20.
  51. Xue W.J., Huang D.L., Zeng G.M., Wan J., Cheng M., Zhang C., Hu C.J., Li J. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review // Chemosphere. 2018. № 210. P. 1145–1156.
  52. Yadav S.K. Heavy metals toxicity in plants: An overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants // S. Afr. J. Bot. 2010. V. 76. P. 16–179.
  53. Yakimenko O.S., Terekhova V.A. Humic preparations and the assessment of their biological activity for certification purposes // Eurasian Soil Sci. 2011. V. 44. P. 1222–1230. https://doi.org/10.1134/S1064229319070159
  54. Yang Q.Q., Li Z.Y., Lu X.N., Duan Q.N., Huang L., Bi J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment // Sci. Total Environ. 2018. V. 42. https://doi.org/690-70010.1016/j.scitotenv.2018.06.068
  55. Zhou H.Y., Ma M.Y., Zhao Y.K., Baig S.A., Hu S.F., Ye M.Y., Wang J.L. Integrated green complexing agent and biochar modified nano zero-valent iron for hexavalent chromium removal: A characterisation and performance study // Sci. Total Environ. 2022. P. 834.

Copyright (c) 2023 Ю.Д. Сергеева, А.П. Кирюшина, В.К. Калеро, О.А. Федорова, В.А. Терехова

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies