

NEW RADIOLARIAN SPECIES *PSEUDODICTYOMITRA CORONATA* SP.
NOV. FROM THE CONIACIAN-SANTONIAN DEPOSITS OF PERAPEDHI
FORMATION, CYPRUS

© 2025 L. G. Bragina

Geological Institute, Russian Academy of Sciences, Moscow, Russia

e-mail: l.g.bragina@mail.ru

Received July 01, 2024

Revised July 18, 2024

Accepted July 18, 2024

Abstract. Numerous representatives of the *Pseudodictyomitra* Pessagno, 1977 were studied from the Upper Cretaceous deposits of Cyprus. Description of *P. pseudomacrocephala* (Squinabol, 1903), emend. Nov. is emended. New species *P. coronata* sp. Nov. is described. Stratigraphic ranges and phylogenetic relationships in the family *Pseudodictyomitridae* are detailed.

Keywords: *Radiolaria, Pseudodictyomitridae, new species, симметрия, Upper Cretaceous, Cyprus*

DOI: 10.31857/S0031031X250102e6

INTRODUCTION

As a result of investigating radiolarian assemblages from several sections of the Perapedhi Formation (Cyprus), numerous representatives of the genus *Pseudodictyomitra* Pessagno, 1977 were identified (Fig. 1; Table II, fig. 1, 4-19). Analysis of available literature data allowed refining the diagnosis of the genus *Pseudodictyomitra* (Bragina, 2024). Some species of this genus are very important for Upper Cretaceous stratigraphy. For example, *P. crassa* Bragina, 2013 (stratigraphic range: lowermost Coniacian - middle Santonian) has been chosen as one of the characteristic species of the *Alievium praegallowayi* Zone (Lower Coniacian; Bragina, 2016a). The species *P.*

pseudomacrocephala (Squinabol, 1903) also has important stratigraphic significance, as it terminates near the Turonian-Coniacian boundary (Bragina et al., 2014; Bragina, Bragin, 2015; Kopaevich et al., 2015). Photographic images of *P. pseudomacrocephala* appear in numerous publications, but this species is not always correctly diagnosed. The study of morphological features of *P. pseudomacrocephala* from the Turonian deposits of Cyprus (present article), as well as analysis of literature data, allowed refining the description of this species important for Upper Cretaceous stratigraphy (Marcucci et al., 1991; O'Dogherty, 1994; Gorka, 1996; Erbacher, Thurow, 1998; Babazadeh, De Wever, 2004; Bragina, 2004, 2012; Bragina, Bragin, 2006; Musavu-Moussavou et al., 2007; Moix, Gorican, 2013; Shridashtzadeh et al., 2015, etc.).

A previously unknown taxon belonging to the genus *Pseudodictyomitra* (*P. coronata* sp. nov.; pl. II, fig. 6–13, 15–19) is consistently found in the Upper Cretaceous deposits of Cyprus, and its description is provided in this publication. Thus, this work continues a series of articles devoted to the description of new radiolarian species from the Upper Cretaceous of Cyprus (Bragina, Bragin, 1995, 1996; Bragina, Vishnevskaya, 2007; Bragina, 2008, 2010, 2013, 2014, 2023; Bragina, Bragin, 2016, 2018; Bragina, 2024). The study established that transitional forms of the phylogenetic lineage *P. pseudomacrocephala* – *P. coronata* sp. nov. are distributed in the Crimean sections from the Upper Turonian (Bragina et al., 2014), in Cyprus sections up to the Lower Coniacian (pl. II, fig. 4), and *P. coronata* sp. nov. is present in Cyprus sections from the Coniacian (pl. II, fig. 6, 8–11, 15–19) to the Lower Santonian inclusive (Bragina, 2012, pl. II, fig. 1; here: pl. II, fig. 7, 12, 13).

Only one species of the genus *Pseudodictyomitra* was known within the Coniacian and Santonian until the beginning of the 21st century: *P. nakasekoi* Taketani, 1982. Over the past two decades, the genus *Pseudodictyomitra* has been expanded with four new species: *P. quasilocogeaensis* Bragina, 2004, *P. crassa* Bragina, 2013, *P. venusta* Bragina, 2024, and *P. coronata* sp. nov. (Bragina, 2004, 2024; Bragina, 2013; present publication). Currently, four species belonging to the genus *Pseudodictyomitra* (*P. crassa*, *P. nakasekoi*, *P. venusta*, and *P. coronata* sp. nov.) are known within the

Coniacian and Santonian. This indicates the continued speciation of this genus in the specified interval. The species *Dictyomitra sagitafera* Aliev, 1965 is included in the genus *Pseudodictyomitra* Pessagno, 1977 (Bragina, Bragin, 2015). New data allow us to clarify the phylogenetic relationships and stratigraphic distribution of Late Cretaceous species of the genus *Pseudodictyomitra*, which were previously analyzed by L. O'Dogherty (O'Dogherty, 1994) and the author (Bragina, 2016b). Based on new data, the author of the article proposes (Fig. 2):

- 1) a new phylogenetic lineage in which the species *P. venusta* and *P. crassa* descended from *P. recta* Vishnevskaya, 1991;
- 2) the phylogenetic lineage whose ancestor is considered to be the species *P. pentaculaensis* Pessagno, 1977 has been clarified and supplemented.

MATERIAL AND RESEARCH METHODS

The new study of radiolarians included the examination of 49 specimens of representatives of the genus *Pseudodictyomitra* from the following sections: Akamas, Mangaleni-8, and the composite Mangaleni section (deposits of middle-upper Turonian and Coniacian, Cyprus), and analysis of the author's collection material obtained from numerous sections of Crimea and the Greater Caucasus.

Radiolarian photography was performed using a TESCAN 2300 scanning electron microscope at the Geological Institute of the Russian Academy of Sciences (GIN RAS).

Paleontological description was carried out using generally accepted terms. The classification of O'Dogherty et al. (2009) with some modifications was used in the work. The zonal scheme proposed for the Tethyan regions of Eurasia (Bragina, 2016a) is applied in the work.

Collections of Cretaceous radiolarians from Cyprus (No. 4878) and Crimea (No. 4870) are stored in GIN RAS.

DESCRIPTION OF TAXA

① PHYLUM SARCODINA

① CLASS RADIOLARIA

① ORDER SPUMELLARIA

③ FAMILY PSEUDODICTYOMITRIDAE PESSAGNO, 1977

④ Genus *Pseudodictyomitra* Pessagno, 1977, emend. Bragina, 2024

⑤ *Pseudodictyomitra pseudomacrocephala* (Squinabol, 1903), emend. Bragina nov.

⑥ Plate II, fig. 1, 2

Dictyomitra pseudomacrocephala: Squinabol, 1903, p. 139, plate 10, fig. 2.

Pseudodictyomitra pseudomacrocephala: Pessagno, 1976, pl. 3, fig. 2, 3; 1977, p. 51, pl. 8, fig. 10, 11; Okamura, 1980, pl. 21, fig. 6; De Wever, Thiebaut, 1981, p. 592, pl. 1, fig. 5; Nakaseko, Nishimura, 1981, p. 159, pl. 9, fig. 1, pl. 9, fig. 2, 3; Schaaf, 1981, pl. 24, fig. 1a, 1b; Taketani, 1982, p. 61, pl. 12, fig. 7, 8; Schaaf, 1984, p. 130–131, fig. H (=holotype refigured), 1, 6a–c; Thurow, Kuhnt, 1986, fig. 9.11; Thurow, 1988, p. 405, pl. 1, fig. 13, pl. 3, fig. 16; Kato, Iwata, 1989, pl. 8, fig. 6; O'Dogherty, 1994, p. 108, pl. 8, fig. 6, 8; Gorka, 1996, pl. 3, fig. 1–10; Erbacher, Thurow, 1998, fig. 6.10; Salvini, Marcucci Passerini, 1998, fig. 8.h; Vishnevskaya, 2001, p. 183–184, pl. 129, fig. 5, 9, 10); Bragina, 2004, p. 367, pl. 7, fig. 4, pl. 32, fig. 9, 14–16; Vishnevskaya et al., 2006, pl. IV, fig. 11; Musavu-Moussavou et al., 2007, pl. 2, fig. 9, 10; Bak, 2011, fig. 50.I; Smreckova, 2011, pl. I, fig. 19; Danelian et al., 2014, fig. 8.2; Bragina et al., 2014, fig. 4.5; Bragina, Bragin, 2015, pl. II, fig. 1, pl. III, fig. 14; Shridashtzadeh et al., 2015, fig. 3.10; Kopaevich et al., 2015, pl. V, fig. 1, 2, 20; Bragina, Bragin, 2016, pl. 5, fig. 5, pl. 6, fig. 8, 9, pl. 7, fig. 2, 3.

?*Pseudodictyomitra pseudomacrocephala*: O'Dogherty, 1994, p. 108, pl. 8, fig. 5; Moix, Goričan, 2013, pl. 1, fig. p.

Non *Pseudodictyomitra pseudomacrocephala*: O'Dogherty, 1994, p. 108, pl. 8, fig. 7; Babazadeh, De Wever, 2004, fig. 7D.

Holotype – Northern Italy, southern part of the Venetian Alps; uppermost Lower Cretaceous–lowermost Upper Cretaceous, Upper Albian–Lower Turonian, Scaglia Bianca Formation, Teolo Series (Squinabol, 1903, pl. 10, fig. 2).

Description. The shell has an elongated shape with a bulb-like proximal part and a highly conical dorsal part. The shell consists of 12-16 chambers. The cephalis is smoothed and usually lacks an apical horn. The cephalis, thorax, abdomen, first and (often) second post-abdominal chambers are combined into a bulb-like form, within which there are no external inter-chamber constrictions. The proximal (bulb-like) part of the shell has a thickened wall, externally smoothed, sometimes with weakly developed ribs in the lower part. The base of the bulb-like part of the shell usually has a single row of main pores. A double row of rounded main pores is developed at the inter-chamber junctions beyond the bulb-like part of the shell. The ribs (usually seven to nine) are elongated and massive, visible in lateral view on each post-abdominal chamber developed beyond the bulb-like part of the shell. A single relict pore is developed between adjacent ribs. The width and height of the post-abdominal chambers slightly increase toward the aperture. The final post-abdominal chamber has a wide septum with a narrow aperture.

Dimensions in μm :

Specimen	H	Hcl	Wcl	W	d
No.					
4878/130	376	75	80	262	6-12
No.	300	85	82	150	6-14
4870/404					

Designations: H - shell height, Hcl - height of the bulb-like part of the shell, Wcl - width of the bulb-like part of the shell, W - maximum shell width, d - pore diameter

Comparison. *P. pseudomacrocephala* (Squinabol, 1903) differs from all species of the genus *Pseudodictyormitra* by the presence of a bulb-like formation encompassing the cephalis, thorax, abdomen, and first post-abdominal chambers. It differs from *P. paronai* (Aliev, 1965) by the development of a single relict pore between two adjacent ribs. It differs from the species *P. crassa*

Bragina, 2013, *P. lilyae* (Tan, 1927), *P. nodocostata* Dumitrica, 1997, *P. suyarii* Dumitrica, 1997, and *P. thurowi* Dumitrica, 1997 by the presence of ribs on the last post-abdominal chambers.

Remarks. In the monograph by O'Dogherty (1994), an extensive re-examination of C. Squinabol's collection material was undertaken, including an expanded description of the species *P. pseudomacrocephala*. Since the new taxon *P. coronata* sp. nov. is morphologically similar to *P. pseudomacrocephala*, the description of the latter is clarified in this publication.

The changes are as follows:

1. O'Dogherty's phrase (O'Dogherty, 1994, p. 109): "Shell is elongate conical, cylindrical distally" is changed to: "The shell has an elongated shape with a bulb-shaped proximal part and a highly conical dorsal part."

2. O'Dogherty's phrase (O'Dogherty, 1994, p. 109): "Cephalis smooth with weakly developed apical horn" is changed to: "Cephalis smooth and usually lacking an apical horn." The change emphasizes that most specimens of the species, especially within the Cenomanian and Turonian, lack an apical horn. The most ancient specimens of the species may have a rudimentary apical horn (Thurow, 1988, pl. 3, fig. 16).

3. O'Dogherty's phrase (O'Dogherty, 1994, p. 109): "The first four or five segments are included in a strongly thickened wall, externally masking the joints between them (this feature is visible only in transmitted light); the proximal part resembles an arrow along the main axis of the shell" is changed to: "Cephalis, thorax, abdomen, first and (often) second post-abdominal chambers are combined into a bulb-shaped form, within which there are no external inter-chamber constrictions." O'Dogherty calls the shell shape arrow-like. However, the proximal part of the *P. pseudomacrocephala* shell has a swollen bulb-like shape.

4. O'Dogherty's phrase (O'Dogherty, 1994, p. 109): "Initial part smooth, but slightly ribbed in the lower part, usually with a double row of main pores" is changed to: "The proximal (bulb-shaped)

part of the shell has a thickened wall, externally smooth, sometimes with weakly developed ribs in the lower part."

5. O'Dogherty's phrase (O'Dogherty, 1994, p. 109): "Double row of circular main pores present at postabdominal chamber junctions" is changed to: "Double row of circular main pores developed at interchamber junctions beyond the bulbous part of the shell." This clarification is necessary because pores are absent between the first and second postabdominal chambers. Usually, the bulbous proximal part of the shell combines five chambers (Squinabol, 1903, p. 139; Schaaf, 1984, fig. 5), in some cases only four chambers may be combined: cephalis, thorax, abdomen, and the first postabdominal chamber (Schaaf, 1984, fig. 6).

The presence of a single relict pore between adjacent ribs is a characteristic feature of the species *P. pseudomacrocephala* (Pessagno, 1977, p. 51; O'Dogherty, 1994, p. 109). From the latter, it follows that morphotypes with a double row of relict pores between adjacent ribs (O'Dogherty, 1994, pl. 8, fig. 7; Babazadeh, De Wever, 2004, fig. 7D) do not belong to the species *P. pseudomacrocephala*.

Individual specimens of the species in the Cenomanian (Gorka, 1996, pl. 3, fig. 4, 9: Polish Carpathians), in the Turonian (Bragina, 2004, pl. 32, fig. 14: Crimea; Salvini, Marcucci Passerini, 1998, fig. 8.h, Italy) and, especially, in the Late Turonian (Bragina, Bragin, 2015, pl. III, fig. 14; Kopaevich et al., 2015, pl. V, fig. 2: Northeastern Azerbaijan) are characterized by a slightly inflated proximal (bulbous) part of the shell, the length of which is twice its width.

The specimen *Pseudodictyomitra* sp. A (pl. II, fig. 3) differs from typical *P. pseudomacrocephala* by the arrow-shaped form of the proximal part of the shell, which is not characteristic for this species.

Distribution. Upper Albian – Upper Turonian, worldwide; Middle Albian – Upper Turonian of Cyprus; Upper Cenomanian – Upper Turonian of the Mountainous Crimea.

Material. 15 specimens from the composite section of Mangaleni (uppermost Middle Turonian and Upper Turonian).

⑤ **Pseudodictyomitra coronata Bragina, sp. nov.**

⑥ Pl. II, fig. 6–13, 15–19

?Pseudodictyomitra sp.: Okamura, 1980, pl. 22, fig. 1.

Pseudodictyomitra pseudomacrocephala subsp. A (Squinabol, 1903): Nakaseko, Nishimura, 1981, p. 159, pl. 16, fig. 6.

Pseudodictyomitra sp. A: Bragina, Bragin, 2006, pl. II, fig. 9.

Pseudodictyomitra pseudomacrocephala (Squinabol, 1903): Bragina, 2012, table I, fig. 1.

S p e c i e s n a m e from coronatus *Latin*. – crowned with a crown, coronated.

H o l o t y p e – GIN, № 4878/318; Cyprus, Akamas section; Lower Coniacian, Perapedhi Formation, Unit I (upper part), sample 21-16-1, Alievium praegallowayi zone.

D e s c r i p t i o n. Shell has a high conical shape. Cephalis is conical and lacks an apical horn. Cephalis and thorax form a cone, separated from each other by a single row of pores. Abdomen is barrel-shaped. Abdomen width is approximately 1.2–1.3 times greater than that of the thorax. Thorax and abdomen are separated from each other by a single row of pores. The width of the first postabdominal chamber is 0.75–0.8 of the abdomen width, which gives the shell an overall arrow-like shape along its main axis. The second and subsequent postabdominal chambers slightly increase in width and height toward the aperture. Abdomen and subsequent postabdominal chambers have well-formed ribs. The ribs range from thin crescent-shaped to sub-rectangular (plate II, fig. 10, 11, 15). The abdomen has seven to eight ribs (sometimes up to nine) on half of the diameter. The number of ribs may slightly increase toward the final postabdominal chamber. A single relict pore is developed between adjacent ribs. The diameter of the relict pores is greater than or equal to the diameter of the main pores at the intercameral constrictions. The final postabdominal chamber ends with a wide septum with a narrow aperture (plate II, fig. 10).

D i m e n s i o n s i n μ m:

Specimen	H	Hc	Wc	Ht	Wt	Ha	Wa	W1p	W	d
No.	297	7	49	25	75	27	105	85	140	2-8

4878/318

(holotype)

No.	288	25	55	25	79	26	99	85	130	2-8
4878/307										

No.	275	26	55	25	74	25	91	80	124	3-9
-----	-----	----	----	----	----	----	----	----	-----	-----

4878/308

No.	320	27	67	27	89	27	103	99	150	3-8
-----	-----	----	----	----	----	----	-----	----	-----	-----

4878/309

No.	300	24	54	25	82	26	106	100	145	3-7
-----	-----	----	----	----	----	----	-----	-----	-----	-----

4878/310

No.	277	26	50	24	81	26	106	100	154	2-
-----	-----	----	----	----	----	----	-----	-----	-----	----

4878/311

No.	250	25	49	24	76	26	99	96	126	2-8
-----	-----	----	----	----	----	----	----	----	-----	-----

4878/312

(paratype)

No.	285	27	60	26	80	28	103	99	150	2-7
-----	-----	----	----	----	----	----	-----	----	-----	-----

4878/313

No.	298	24	55	24	75	28	102	97	142	2-8
-----	-----	----	----	----	----	----	-----	----	-----	-----

4878/314

No.	292	24	56	25	78	26	103	99	152	2-7
-----	-----	----	----	----	----	----	-----	----	-----	-----

4878/316

(paratype)

No.	305	27	58	23	77	26	106	102	148	2-6
-----	-----	----	----	----	----	----	-----	-----	-----	-----

4878/317

No.	307	28	53	25	83	26	105	95	145	2-9
-----	-----	----	----	----	----	----	-----	----	-----	-----

4878/319

No.	318	27	60	25	85	28	105	92	152	2-9
-----	-----	----	----	----	----	----	-----	----	-----	-----

4878/320

Abbreviations: H – shell height, Hc – cephalis height, Wc – cephalis width, Ht – thorax height, Wt – thorax width, Ha – abdomen height, Wa – abdomen width, W1p – width of the first postabdominal chamber; W – maximum shell width, d – pore diameter

C o m p a r i s o n . The new species differs from *P. pseudomacrocephala* (Squinabol, 1903) by the presence of distinct rows of pores separating the cephalis from the thorax and the thorax from the abdomen, well-formed ribs of the abdomen, as well as the arrow-shaped form of the proximal part of the shell. It differs from *P. nakasekoi* Taketani, 1982 by the expanded, arrow-shaped form of the proximal part of the shell.

R e m a r k s . Since the new species was not studied under an optical microscope, it is possible that the ribs on the proximal part of the shell develop not from the abdominal chamber, but from the first postabdominal one. Two relict pores, oriented in a horizontal row, may sometimes be developed between adjacent ribs on individual postabdominal chambers (pl. II, fig. 11, 15, 17). The double row of main pores between the abdomen and the first postabdominal chamber is not always clearly visible, as the row closer to the first postabdominal chamber usually consists of imperforate pores (pl. II, fig. 11).

Specimen *Pseudodictyomitra* sp. B (pl. I, fig. 4) differs from typical representatives of *P. coronata* sp. nov. by poorly developed ribs on the inflated proximal part of the shell. Specimens of *Pseudodictyomitra* sp. C (pl. II, fig. 5, 14) differ from typical representatives of *P. coronata* sp. nov. by the absence of a row of pores between the cephalis and abdomen. The specimen *Pseudodictyomitra*

sp. (Okamura, 1980, pl. 22, fig. 1), unfortunately, has mediocre preservation, which does not allow it to be unambiguously attributed to *P. coronata* sp. nov.

Material. 18 specimens: three specimens from the type locality, 12 specimens from the composite section of Mangaleni (lower Coniacian–lower Santonian), and three specimens from the Mangaleni-8 section (lower Coniacian).

* * *

The author expresses gratitude to M.S. Afanasieva (Borissiak Paleontological Institute of RAS) and V.S. Vishnevskaya (GIN RAS) for critical remarks and advice; N.V. Gorkova (GIN RAS) for assistance with electron microscopic work.

FUNDING

This work was funded by the budget of the Geological Institute of the Russian Academy of Sciences within the framework of the state assignment FMMG-2021-0003. No additional grants for conducting or supervising this particular research were received.

CONFLICT OF INTERESTS

The author of this work declares that she has no conflict of interest.

REFERENCES

1. *Bragina L.G.* Radiolarians of the family Neosciadiocapsidae from the Turonian–Santonian of the Perapedhi Formation (Southern Cyprus) // Paleontol. Zhurn. 2008. № 2. P. 27–37.
2. *Bragina L.G.* New species of Cretaceous radiolarians of the genus Afens Riedel et Sanfilippo // Paleontol. Zhurn. 2010. № 1. P. 13–16.
3. *Bragina L.G.* New radiolarians of the family Pseudodictyomitridae from the Coniacian–Santonian of the Perapedhi Formation (Southern Cyprus) // Paleontol. Zhurn. 2013. № 5. P. 3–6.

4. *Bragina L.G.* New species of radiolarians of the order Nassellaria from the Coniacian–Santonian of the Perapedhi Formation (Southern Cyprus) // Paleontol. Zhurn. 2014. № 2. P. 3–10.
5. *Bragina L.G.* Zonal scheme of the Cretaceous (Albian–Santonian) deposits of the Tethyan regions of Eurasia based on radiolarians // Stratigr. Geol. Correlation. 2016a. Vol. 24. № 2. P. 41–66.
6. *Bragina L.G.* Development of radiolarians in the Late Albian–Campanian // Stratigr. Geol. Correlation. 2016b. Vol. 24. № 5. P. 91–112.
7. *Bragina L.G.* New species of radiolarians of the genus *Patellula* Kozlova from the Turonian–Maastrichtian deposits of Cyprus and Crimea // Paleontol. Zhurn. 2023. № 4. P. 14–20.
8. *Bragina L.G., Bragin N.Yu.* Radiolarians and stratigraphy of the Campanian–Maastrichtian deposits of Southwestern Cyprus // Stratigr. Geol. Correlation. 1995. Vol. 3. № 2. P. 53–61.
9. *Bragina L.G., Bragin N.Yu.* Stratigraphy and radiolarians of the stratotype section of the Upper Cretaceous Perapedhi Formation of Cyprus // Stratigr. Geol. Correlation. 1996. Vol. 4. № 3. P. 38 – 45.
10. *Bragina L.G., Bragin N.Yu.* Stratigraphy and radiolarians of the Upper Cretaceous deposits of the sedimentary cover of the Arakapas ophiolite complex (Cyprus) // Stratigr. Geol. Correlation. 2006. Vol. 14. № 5. P. 50–66.
11. *Bragina L.G., Bragin N.Yu.* New data on radiolarians of the Albian–Coniacian from the Kelevudag section (Northeastern Azerbaijan) // Stratigr. Geol. Correlation. 2015. Vol. 23. № 1. P. 48–59.
12. *Bragina L.G., Bragin N.Yu., Kopaevich L.F.* Radiolarians, planktonic foraminifera and stratigraphy of the Turonian–Lower Coniacian of the Biyuk-Karasu section (Crimea) // Vestn. MGU. Ser. 4. Geology. 2014. № 3. P. 3–14.

13. *Bragina L.G., Vishnevskaya V.S.* New species of Cretaceous radiolarians of the genus *Multastrum* Vishnevskaya and their paleobiogeographic distribution // *Paleontol. Zhurn.* 2007. № 6. P. 3–8.
14. *Vishnevskaya V.S.* Radiolarian biostratigraphy of the Jurassic and Cretaceous of Russia. Moscow: GEOS, 2001. 376 p.
15. *Vishnevskaya V.S., Gorbachik T.N., Kopaevich L.F., Bragina L.G.* Development of foraminifera and radiolarians at the critical boundaries of the Albian-Cenomanian and Cenomanian-Turonian (Northern Peritethys) // *Stratigr. Geol. correlation.* 2006. Vol. 14. No. 5. P. 42-63.
16. *Kopaevich L.F., Benyamovsky V.N., Bragina L.G.* Foraminifera and radiolarians from the Upper Albian-Turonian of the Kelevudag section, North-Eastern Azerbaijan // *Stratigr. Geol. correlation.* 2015. Vol. 23. No. 6. P. 28 - 47.
17. *Babazadeh S.A., De Wever P.* Early Cretaceous radiolarian assemblages from radiolarites in the Sistan suture (eastern Iran) // *Geodiversitas.* 2004. V. 26. № 2. P. 185–206.
18. *Bak M.* Tethyan radiolarians at the Cenomanian-Turonian Anoxic Event from the Apennines (Umbria-Marche) and the Outer Carpathians: palaeoecological and palaeoenvironmental implicatios // *Studia Geol. Pol.* 2011. V. 134. P. 5–279.
19. *Bragina L.G.* Cenomanian–Turonian radiolarians of Northern Turkey and the Crimean Mountains // *Paleontol. J.* 2004. V. 38. № 4. P. 325–456.
20. *Bragina L.G.* Radiolarian biostratigraphy of the Perapedhi Formation (Cyprus): implications for the geological evolution of the Troodos Ophiolite // *Bull. Soc. Géol. France.* 2012. V. 183. № 4. P. 347–353.
21. *Bragina L.G.* A new radiolarian species *Pseudodictyomitra venusta* sp. nov. from the Coniacian–Santonian deposits of Perapedhi Formation, Cyprus // *Paleontol. J.* 2024. V. 58. № 1. P. 20–27.

22. *Bragina L., Bragin N.* Cretaceous (Albian to Turonian) radiolarians from chert blocks of the Moni Mélange (Southern Cyprus) // Rev. Micropaléontol. 2016. V. 59. № 4. P. 311–338.

23. *Bragina L., Bragin N.* Family Pseudoaulophacidae (Radiolaria) from the Upper Cretaceous (Coniacian – Maastrichtian) of Cyprus // Rev. Micropaléontol. 2018. V. 61. P. 55–79.

24. *Bragina L., Bragin N., Tsiolakis E. et al.* Late Cretaceous (Coniacian) age of the Perapedhi Formation in the Akamas Peninsula, Cyprus // Cret. Res. 2021. V. 127. <https://doi.org/10.1016/j.cretres.2021.104912>.

25. *Danelian T., Zambetakis-Lekkas A., Galoyan G. et al.* Reconstructing Upper Cretaceous (Cenomanian) paleoenvironments in Armenia based on Radiolaria and benthic Foraminifera; implications for the geodynamic evolution of the Tethyan realm in the Lesser Caucasus // Palaeogeogr., Palaeoclimatol., Palaeoecol. 2014. V. 413. P. 123 - 132.

26. *De Wever P., Thiebaut F.* Les radiolaires d'âge Jurassique supérieur à Crétacé supérieur dans les radiolarites du Pinde-Olonos (Presqu'île de Koroni; Péloponnèse Méridional, Gréce) // Géobios. 1981. № 14. Fasc. 5. P. 577–609.

27. *Erbacher J., Thurow J.* Mid-Cretaceous radiolarian zonation for the North Atlantic: an example of oceanographically controlled evolutionary processes in the marine biosphere? // Spec. Publ. Geol. Soc. London. 1998. V. 131. P. 71–82.

28. *Gorka H.* Cenomanian Radiolaria from Sptawa, Polish Carpathians // Geol. Quarterly. 1996. V. 40. № 4. P. 555–574.

29. *Kato Y., Iwata K.* Radiolarian biostratigraphic study of the Pre-Tertiary system aroud the Kamikawa basin, Central Hokkaido, Japan // J. Fac. Sci., Hokkaido Univ. Ser. IV. 1989. V. 22. № 3. P. 425–452.

30. *Marcucci M., Bettini P., Dainelli J., Sirugo A.* The "Bonarelli Horizon" in the central Apennines (Italy): radiolarian biostratigraphy // Cret. Res. 1991. V. 12. P. 321–331.

31. *Moix P., Goričan Š.* Jurassic and Cretaceous radiolarian assemblages from the Bornova mélange in northern Karaburun Peninsula (western Turkey) and its connection to the İzmir–Ankara mélanges // *Geodinamica Acta*. 2013. V. 26. № 1–2. P. 56–67.
32. *Musavu-Moussavou B., Danelian T., Baudin F. et al.* The Radiolarian biotic response during OAE2. A high-resolution study across the Bonarelli level at Bottaccione (Gubbio, Italy) // *Rev. Micropaléontol.* 2007. V. 50. P. 253–287.
33. *Nakaseko K., Nishimura A.* Upper Jurassic and Cretaceous Radiolaria from the Shimanto Group in Southwest Japan // *Sci. Rep., College of General Education Osaka Univ.* 1981. V. 30. № 2. P. 133–203.
34. *O'Dogherty L.* Biochronology and paleontology of mid-Cretaceous radiolarians from northern Apennines (Italy) and Betic Cordillera (Spain) // *Mém. Géol. Lausanne*. 1994. V. 21. P. 1–413.
35. *O'Dogherty L., Carter E.S., Dumitrica P. et al.* Catalogue of Mesozoic radiolarian genera. Pt 2. Jurassic-Cretaceous // *Geodiversitas*. 2009. V. 31. P. 271–356.
36. *Okamura M.* Radiolarian fossils from the northern Shimanto Belt (Cretaceous) in Kochi Prefecture, Shikoku // *Geology and Paleontology of the Shimanto Belt*. 1980. P. 153–178.
37. *Pessagno E.A., Jr.* Radiolarian zonation and stratigraphy of the Upper Cretaceous portion of the Great Valley sequence, California coast ranges // *Micropaleontology*. 1976. Spec. Publ. 2. P. 1–95.
38. *Pessagno E.A., Jr.* Lower Cretaceous radiolarian biostratigraphy of the Great Valley sequence and Franciscan coast ranges // *Cushman Found. Foraminiferal Res. Publ.* 1977. V. 15. P. 1–87.
39. *Salvini G., Marcucci Passerini M.* The radiolarian assemblages of the Bonarelli Horizon in the Umbria-Marche Apennines and southern Alps, Italy // *Cret. Res.* 1998. V. 19. P. 777–804.

40. *Schaaf A.* Late early Cretaceous Radiolaria from Deep Sea Drilling Project Leg 62 // Init. Reports Deep Sea Drilling Project. 1981. V. 62. P. 419–470.

41. *Schaaf A.* Les Radiolaires du Crétacé Inférieur et Moyen: Biologie et Systematique. Strasbourg Cedex: Univ. Louis Pasteur, 1984. 189 p.

42. *Squinabol S.* Le Radiolarie dei noduli selciosi nella Scaglia degli Euganei. Contribuzione I // Riv. Ital. Paleontol. 1903. V. 9. P. 105–151.

43. *Shridashtzadeh N., Kachovich S., Aitchison J. C., Samadi R.* Mid-Cretaceous radiolarian faunas from the Ashin Ophiolite (western Central-East Iranian Microcontinent) // Cret. Res. 2015. V. 56. P. 110–118.

44. *Smreckova M.* Lower Turonian radiolarians from the Červená skala section (Pieniny Klippen Belt, Western Carpathians // Mineralia Slovaca. 2011. V. 43. P. 31–38.

45. *Taketani Y.* Cretaceous radiolarian biostratigraphy of the Urakawa and Obira areas, Hokkaido // Sci. Rep. Tohoku Univ. Ser. 2: Geol. 1982. V. 52. № 1–2. P. 1–75.

46. *Thurow J.* Cretaceous radiolarians of the North Atlantic ocean: ODP Leg 103 (sites 638, 640, and 641) and DSDP Legs 93 (site 603) and 47B (site 398) // Proc. Ocean Drilling Program, Sci. Results. 1988. V. 103. P. 379–418.

47. *Thurow J., Kuhnt W.* Mid-Cretaceous of the Gibraltar Arch Area // Spec. Publ. Geol. Soc. London. 1986. V. 21. P. 423–445.

Figure captions

Fig. 1. Location of the studied radiolarians in Cyprus: *a* – scheme of sections location; *b*, *c*, *d* – lithological columns: *b* – composite section of Mangaleni, *c* – Akamas section, *d* – Mangaleni-8 section. Legend: 1 – Troodos ophiolite massif, 2 – Arakapas fault, 3 – upper pillow lavas, 4 – umbrites with interlayers of radiolarian cherts and massive abiogenic cherts, 5 – cherts with interlayers of siliceous mudstones, 6 – opal-like, manganiferous cherts, 7 – findings of radiolarians of the genus *Pseudodictyomitra*.

Fig. 2. Stratigraphic distribution and phylogenetic relationships of the genus *Pseudodictyomitra* Pessagno, 1977 within the Middle Albian–Campanian (from: Bragina, 2016b, with changes and additions).

Explanation to Plate II

Fig. 1, 2. *Pseudodictyomitra pseudomacrocephala* (Squinabol, 1903): 1 – specimen GIN, No. 4878/130 (from: Bragina, Bragin, 2016, Pl. 5, fig. 5), 2 – specimen GIN, No. 4870/404 (from: Bragina et al., 2014, fig. 4.4).

Fig. 3. *Pseudodictyomitra* sp. A, specimen GIN, No. 4870/405 (from: Bragina et al., 2014, fig. 4.5).

Fig. 4. *Pseudodictyomitra* sp. B, specimen GIN, No. 4878/265 (from: Bragina et al., 2021, fig. 5J).

Fig. 5, 14. *Pseudodictyomitra* sp. C: 5 – specimen GIN, No. 4878/306, 14 – specimen GIN, No. 4878/315.

Fig. 6–13, 15–19. *Pseudodictyomitra coronata* sp. nov.: 6 – specimen GIN, No. 4878/307, 7 – specimen GIN, No. 4878/308, 8 – specimen GIN, No. 4878/309, 9 – specimen GIN, No. 4878/310, 10 – specimen GIN, No. 4878/311, 11 – paratype GIN, No. 4878/312, 12 – specimen GIN, No. 4878/313, 13 – specimen GIN, No. 4878/314, 15 – paratype GIN, No. 4878/316, 16 – specimen GIN, No. 4878/317, 17 – holotype GIN, No. 4878/318, 18 – specimen GIN, No. 4878/319, 19 – specimen GIN, No. 4878/320.

Cyprus: Moni Formation, sample 03-2-4, zone Alievium superbium, Lower Turonian (fig. 1); Perapedhi Formation, Akamas section, Alievium praegallowayi zone, Lower Coniacian, sample 19-18-1 (fig. 4, 6); Mangaleni-8 section, Alievium praegallowayi zone, Lower Coniacian (fig. 5, 9, 14, 18): 5, 18 – sample 21-18-5, 9 – sample 21-18-1, 14 – sample 21-18-2; composite Mangaleni section (fig. 7, 8, 10–13, 15–17, 19): 7, 12, 13 – Theocampe urna zone, Lower Santonian, sample 03-3-3; 8, 10, 11, 16 – Cyprodictyomitra longa zone, Upper Coniacian: 8 – sample 21-14-5, 10, 16 – sample 21-14-1, 11 – sample 21-14-2; 15, 17, 19 – Alievium praegallowayi zone, Lower Coniacian: 15 – sample 21-16-2, 17, 19 – sample 21-16-1.

Crimea, Byuk-Karasu River section, Actinomma (?) belbekense zone, Upper Turonian (fig. 2, 3): 2 – sample 09-13-17, 3 – sample 09-13-29. Scale bar 100 μ m

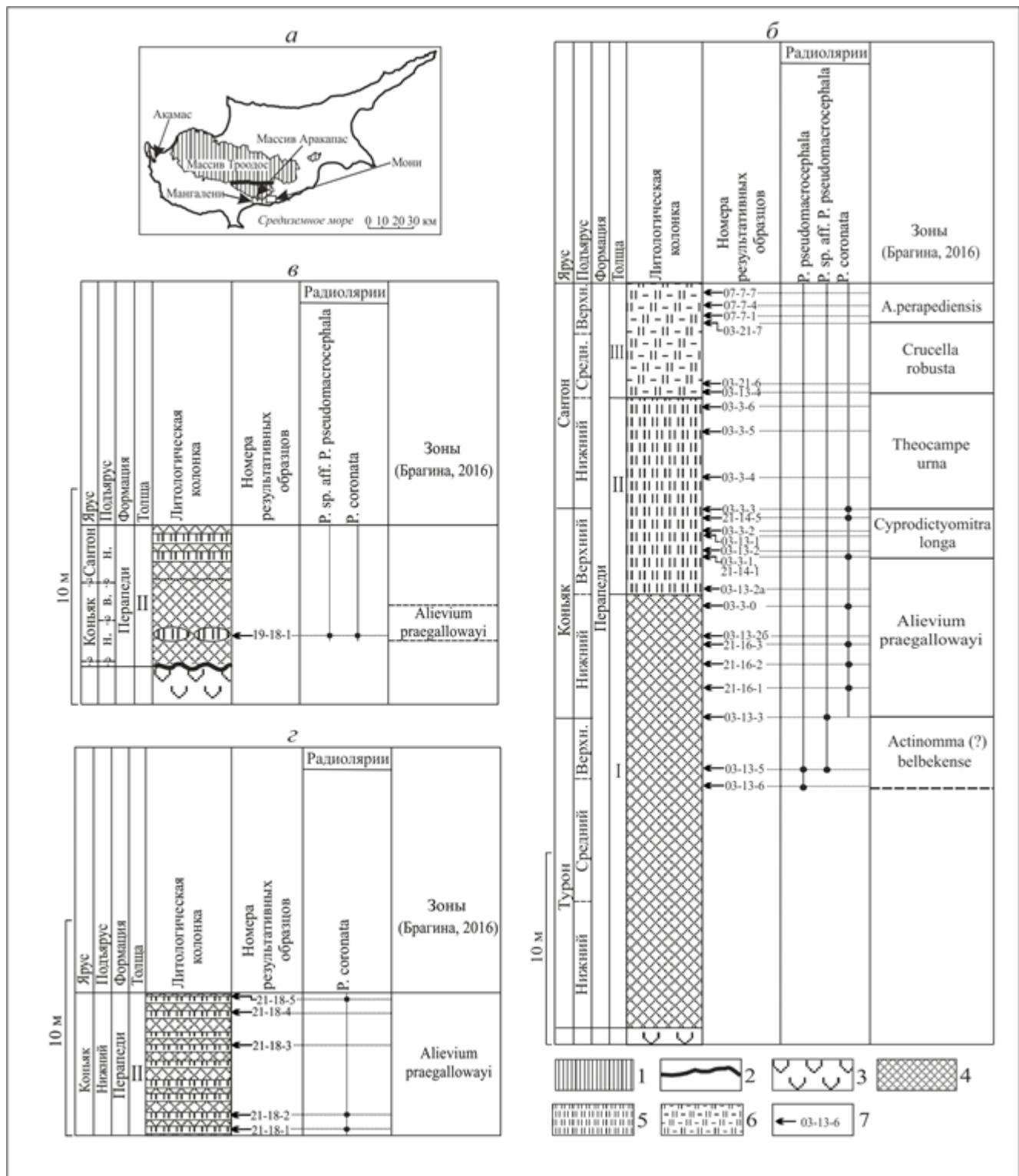


Fig. 1

Под Pseudodictyomitra Pessagno, 1977

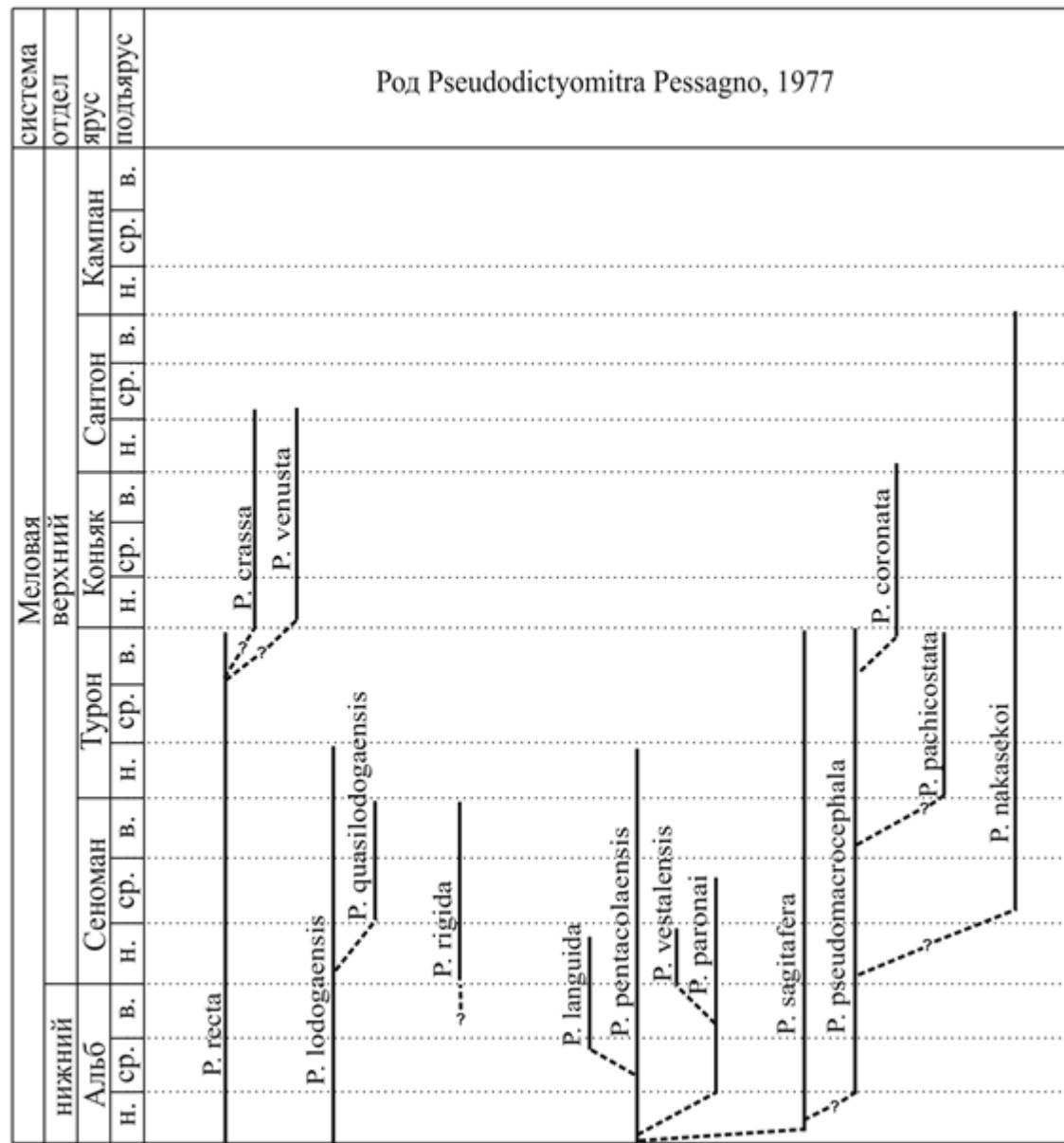
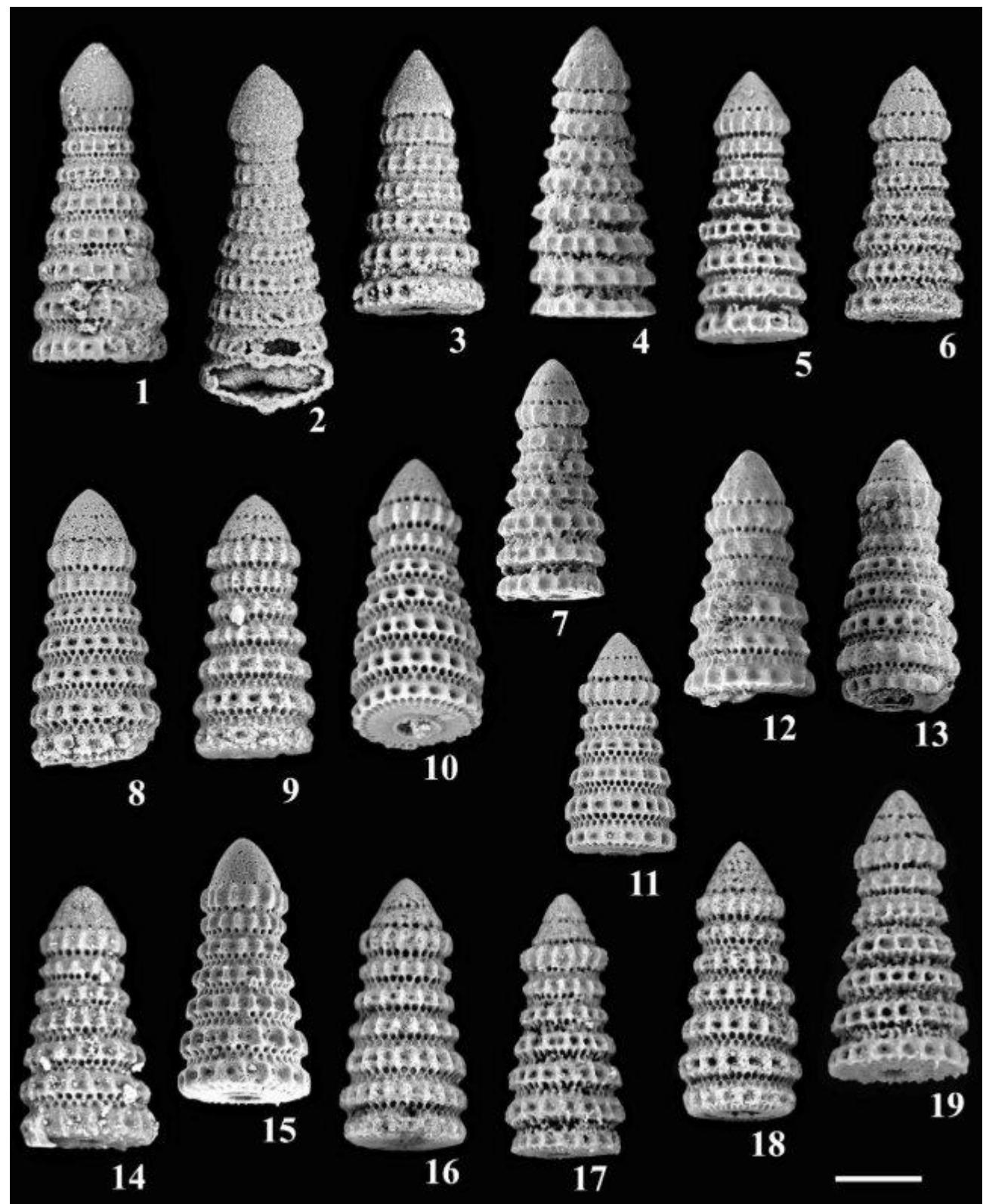



Fig. 2

Table II

