Quantization of electromagnetic field and analysis of Purcell effect based on formalism of scattering matrix
- Авторы: Kaliteevski M.A.1,2,3, Gubaydullin A.R.2,3, Ivanov K.A.2,3, Mazlin V.A.2
- 
							Учреждения: 
							- St. Petersburg Academic University
- ITMO University
- Ioffe Institute
 
- Выпуск: Том 121, № 3 (2016)
- Страницы: 410-419
- Раздел: Nonlinear and Quantum Optics
- URL: https://journals.rcsi.science/0030-400X/article/view/165011
- DOI: https://doi.org/10.1134/S0030400X16090095
- ID: 165011
Цитировать
Аннотация
We have developed a rigorous self-consistent approach for the quantization of electromagnetic field in inhomogeneous structures. The approach is based on utilization of the scattering matrix of the system. Instead of the use of standard periodic Born-Karman boundary conditions, we use the quantization condition implying equating eigenvalues of the scattering matrix (S-matrix) of the system to unity (S-quantization). In the trivial case of uniform medium boundary condition for S-quantization is nothing but periodic boundary condition. S-quantization allows calculating modification of the spontaneous emission rate for arbitrary inhomogeneous structure and direction of the emitted radiation. S-quantization solves the long-standing problem coupled to normalization of the quasi-stationary electromagnetic modes. Examples of application of S-quantization for the calculation of spontaneous emission rate for the cases of Bragg reflector and microcavity are demonstrated.
Об авторах
M. Kaliteevski
St. Petersburg Academic University; ITMO University; Ioffe Institute
							Автор, ответственный за переписку.
							Email: m.kaliteevski@mail.ru
				                					                																			                												                	Россия, 							St. Petersburg, 194021; St. Petersburg, 197101; St. Petersburg, 194021						
A. Gubaydullin
ITMO University; Ioffe Institute
														Email: m.kaliteevski@mail.ru
				                					                																			                												                	Россия, 							St. Petersburg, 197101; St. Petersburg, 194021						
K. Ivanov
ITMO University; Ioffe Institute
														Email: m.kaliteevski@mail.ru
				                					                																			                												                	Россия, 							St. Petersburg, 197101; St. Petersburg, 194021						
V. Mazlin
ITMO University
														Email: m.kaliteevski@mail.ru
				                					                																			                												                	Россия, 							St. Petersburg, 197101						
Дополнительные файлы
 
				
			 
						 
						 
						 
					 
						 
									 
  
  
  
  
  Отправить статью по E-mail
			Отправить статью по E-mail  Открытый доступ
		                                Открытый доступ Доступ предоставлен
						Доступ предоставлен Только для подписчиков
		                                		                                        Только для подписчиков
		                                					