Modeling of the optical properties of porous silicon photonic crystals in the visible spectral range


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Optical devices based on photonic crystals are of great interest because they can be efficiently used in laser physics and biosensing. Photonic crystals allow one to control the propagation of electromagnetic waves and to change the emission characteristics of luminophores embedded into photonic structures. One of the most interesting materials for developing one-dimensional photonic crystals is porous silicon. However, an important problem in application of this material is the control of the refractive index of layers by changing their porosity, as well as the refractive index dispersion. In addition, it is important to have the possibility of modeling the optical properties of structures to choose precisely select the fabrication parameters and produce one-dimensional photonic crystals with prescribed properties. In order to solve these problems, we used a mathematical model based on the transfer matrix method, using the Bruggeman model, and on the dispersion of silicon refractive index. We fabricated microcavities by electrochemical etching of silicon, with parameters determined by the proposed model, and measured their reflection spectra. The calculated results showed good agreement with experimental data. The model proposed allowed us to achieve a microcavity Q-factor of 160 in the visible region.

About the authors

D. S. Dovzhenko

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Author for correspondence.
Email: dovzhenkods@gmail.com
Russian Federation, Moscow, 115409

I. L. Martynov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: dovzhenkods@gmail.com
Russian Federation, Moscow, 115409

I. S. Kryukova

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: dovzhenkods@gmail.com
Russian Federation, Moscow, 115409

A. A. Chistyakov

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)

Email: dovzhenkods@gmail.com
Russian Federation, Moscow, 115409

I. R. Nabiev

National Research Nuclear University MEPhI (Moscow Engineering Physics Institute); University of Reims, Champagne-Ardenne

Email: dovzhenkods@gmail.com
Russian Federation, Moscow, 115409; Reims, 51100

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2017 Pleiades Publishing, Ltd.