Сhanges of Thermal Conditions Trends in the Tropical Zone of the Pacific Ocean in 1982–2021

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on National Oceanic and Atmospheric Administration (NOAA, USA) and Japan Meteorological Agency (JMA) climate data sets for 1982–2021, regional features and trends of interannual changes of water temperature in the upper 2200-m layer of the Pacific Ocean tropical part were investigated, as well as their possible relationships with variations of climatic characteristics. Obtained results provide description of three-dimensional structure of the temperature anomalies and heat content variability in the water column and rate of warming in the various areas for specific phases of the resent global warming.

Sobre autores

I. Rostov

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Autor responsável pela correspondência
Email: rostov@poi.dvo.ru
Russia, Vladivostok

E. Dmitrieva

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: rostov@poi.dvo.ru
Russia, Vladivostok

N. Rudykh

V.I. Il’ichev Pacific Oceanological Institute, Far Eastern Branch, Russian Academy of Sciences

Email: rostov@poi.dvo.ru
Russia, Vladivostok

Bibliografia

  1. Бышев В.Н., Нейман В.Г., Романов Ю.А., Серых И.В. О пространственной неоднородности некоторых параметров глобальной изменчивости современного климата // Доклады Академии наук. 2009. Т. 426. № 4. С. 543–548.
  2. Груза Г.В., Ранькова Э.Я., Рочева Э.В., Смирнов В.Д. Географические и сезонные особенности современного глобального потепления // Фундаментальная и прикладная климатология. 2015. Т. 2. С. 41–62.
  3. Ким Сен Ток. Термический режим вод Японского, Охотского морей и Тихого океана, прилегающих к о. Сахалин и Курильским островам // Океанология. 2022. Т. 62. № 5. С. 690–704.
  4. Лучин В.А., Матвеев В.И. Межгодовая изменчивость термического состояния холодного подповерхностного слоя Охотского моря // Известия ТИНРО. 2016. Т. 187. С. 205–216.
  5. Попова В.В., Шмакин А.Б. Региональная структура колебаний температуры приземного воздуха в северной Евразии во второй половине XX–начале XXI веков // Известия РАН. Физика атмосферы и океана. 2010. Т. 46. № 2. С. 15–29.
  6. Ростов И.Д., Дмитриева Е.В. Региональные особенности межгодовых изменений температуры воды в субарктической зоне Тихого океана // Метеорология и гидрология. 2021. № 2. С. 67–79.
  7. Ростов И.Д., Дмитриева Е.В., Рудых Н.И. Межгодовая изменчивость термических характеристик Индийского океана в условиях глобального потепления // Морской гидрофизический журнал. 2022. Т. 38. № 1. С. 53–72.
  8. An X., Wu B., Zhou T., Liu B. Atlantic multidecadal oscillation drives interdecadal Pacific variability via tropical atmospheric bridge // J. Climate. 2021. V. 34. № 13. P. 5543–5553. https://doi.org/10.1175/jcli-d-20-0983.1
  9. Ashok K., Behera S.K., Rao S.A. et al. El Niño Modoki and its possible teleconnection // J. Geophys. Res. 2007. V. 112. C11007. https://doi.org/10.1029/2006JC003798
  10. Ashok K., Yamagata T. Climate change: the El Niño with a difference // Nature. 2009. V. 461. P. 481–484. https://doi.org/10.1038/461481a
  11. Bayr T., Dommenget D., Martin T., Power S.B. The eastward shift of the Walker Circulation in response to global warming and its relationship to ENSO variability // Climate Dynamics. 2014. V. 43. P. 2747–2763. https://doi.org/10.1007/s00382-014-2091-y
  12. Bindoff N.L., Cheung W.W.L., Kairo J.G. et al. Changing ocean, marine ecosystems, and dependent communities // IPCC Special report on the ocean and cryosphere in a changing climate. Eds. Pörtner H.-O. IPCC, 2019. P. 447–588. https://www.ipcc.ch/srocc/chapter/chapter-5
  13. Bretherton C.S., Widmann M., Dymnikov V.P. et al. The effective number of spatial degrees of freedom of a time-varying field // J. Climate. 1999. V. 12. № 7. P. 1990–2009. https://journals.ametsoc.org/view/journals/clim/12/7/ 1520-442_1999_012_1990_tenosd_2.0.co_2.xml
  14. Ceballos L.I., Di Lorenzo E., Hoyos C.D. et al. North Pacific Gyre Oscillation synchronizes climate fluctuations in the Eastern and Western Boundary Systems // J. Climate. 2009. V. 22. № 19. P. 5163–5174. https://doi.org/10.1175/2009JCLI2848.1
  15. Cha S.-C., Moon J.-H., Song Y.T. A Recent shift toward an El Niño-like ocean state in the Tropical Pacific and the resumption of ocean warming // Geophys. Res. Lett. 2018. V. 45. № 21. P. 11885–11894. https://doi.org/10.1029/2018gl080651
  16. Cheng L., Trenberth K.E., Fasullo J.T. et al. Evolution of ocean heat content related to ENSO // J. Climate. 2019. V. 32. № 12. P. 3529–3556. https://journals.ametsoc.org/view/journals/clim/32/12/jcli-d-18-0607.1.xml.
  17. Chen G., Wang X. Vertical structure of upper-ocean seasonality: annual and semiannual cycles with oceanographic implications // J. Climate. 2016. V. 29. № 1. P. 37–59. https://journals.ametsoc.org/view/journals/clim/29/1/ jcli-d-14-00855.1.xml.
  18. Chung C.T.Y., Power S.B., Sullivan A., Delage F. The role of the South Pacific in modulating Tropical Pacific variability // Scientific Reports. 2019. V. 9. № 1. 18311. https://doi.org/10.1038/s41598-019-52805-2
  19. Cibot C., Maisonnave E., Terray L. et al. Mechanisms of tropical Pacific interannual-to-decadal variability in the ARPEGE/ORCA global coupled model // Climate Dynamics. 2005. V. 24. P. 823–842. https://doi.org/10.1007/s00382-004-0513-y
  20. Climate change in the Pacific: Scientific assessment and new research. Volume 1: Regional Overview. Volume 2: Country reports. Melbourne, Australia: Australian Bureau of Meteorology and CSIRO, 2011. 254 p. https://www.pacificclimatechangescience.org/wp-content/ uploads/2013/06/PCCSP_Vol1_CoversForewordContents.pdf.
  21. Climate change monitoring report 2021. Tokyo, Japan: Japan Meteorological Agency (JMA), 2022. 89 p.
  22. De Deckker P. The Indo-Pacific Warm Pool: critical to world oceanography and world climate // Geosci. Lett. 2016. V. 3. № 20. https://doi.org/10.1186/s40562-016-0054-3
  23. Desbruyères D., McDonagh E.L., King B.A., Thierry V. Global and full-depth ocean temperature trends during the early twenty-first century from Argo and repeat hydrography // J. Climate. 2017. V. 30. № 6. P. 1985–1997. https://doi.org/10.1175/JCLI-D-16-0396.1
  24. Deser C., Guo R., Lehner F. The relative contributions of tropical Pacific sea surface temperatures and atmospheric internal variability to the recent global warming hiatus // Geophys. Res. Lett. 2017. V. 44. № 15. P. 7945–7954. https://doi.org/10.1002/2017gl074273
  25. Deser C., Phillips A.S., Alexander M.A. Twentieth century tropical sea surface temperature trends revisited // Geophys. Res. Lett. 2010. V. 37. L10701. https://doi.org/10.1029/2010GL043321
  26. Di Lorenzo E., Schneider N., Cobb K. M. et al. North Pacific Gyre oscillation links ocean climate and ecosystem change // Geophys. Res. Lett. 2008. V. 35. L08607. https://doi.org/10.1029/2007GL032838
  27. Dong L., Zhou T. The formation of the recent cooling in the eastern tropical Pacific Ocean and the associated climate impacts: A competition of global warming, IPO, and AMO // J. Geophys. Res.: Atmospheres. 2014. V. 119. № 19. P. 11272–11287. https://doi.org/10.1002/2013JD021395
  28. Fenske T., Clement A. No internal connections detected between low frequency climate modes in North Atlantic and North Pacific basins // Geophys. Res. Lett. 2022. V. 49. № 5. e2022GL097957. https://doi.org/10.1029/2022GL097957
  29. IPCC, 2021. Climate Change 2021: The Physical Science Basis. Summary for Policymakers. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 2021. 31 p. https://www.ipcc.ch/report/ar6/wg1/downloads/report/ IPCC_AR6_WGI_SPM.pdf
  30. Kajtar J.B., Santoso A., England M.H., Cai W. Tropical climate variability: interactions across the Pacific, Indian, and Atlantic Oceans // Climate Dynamics. 2017. V. 48. № 7–8. P. 2173–2190. https://doi.org/10.1007/s00382-016-3199-z
  31. Kao H.Y., Yu J.Y. Contrasting eastern Pacific and central Pacific types of ENSO // J. Climate. 2009. V. 22. № 3. P. 615–632. https://doi.org/10.1175/2008JCLI2309.1
  32. Karnauskas K.B., Seager R., Kaplan A. et al. Observed strengthening of the zonal sea surface temperature gradient across the equatorial Pacific Ocean // J. Climate. 2009. V. 22. № 16. P. 4316–4321. https://doi.org/10.1175/2009JCLI2936.1
  33. Kosaka Y., Xie S.-P. The tropical Pacific as a key pacemaker of the variable rates of global warming // Nature Geoscience. 2016. V. 9. № 9. P. 669–673. https://doi.org/10.1038/ngeo2770
  34. Kucharski F., Syed F.S., Burhan A. et al. Tropical Atlantic influence on Pacific variability and mean state in the twentieth century in observations and CMIP5 // Climate Dynamics. 2014. V. 44. № 3–4. P. 881–896. https://doi.org/10.1007/s00382-014-2228-z
  35. Kumar A., Hu Z.-Z. Interannual and interdecadal variability of ocean temperature along the equatorial Pacific in conjunction with ENSO // Climate Dynamics. 2014. V. 42. P. 1243–1258. https://doi.org/10.1007/s00382-013-1721-0
  36. Lee T., McPhaden M.J. Increasing intensity of El Niño in the central-equatorial Pacific // Geophys. Res. Lett. 2010. V. 37. L14603. https://doi.org/10.1029/2010GL044007
  37. Lengaigne M., Hausmann U., Madec G. et al. Mechanisms controlling warm water volume interannual variations in the equatorial Pacific: diabatic versus adiabatic processes // Climate Dynamics. 2012. V. 38. P. 1031– 1046.
  38. Loeb N.G., Thorsen T.J., Norris J.R. et al. Changes in Earth’s energy budget during and after the ”Pause” in global warming: An observational perspective // Climate. 2018. V. 6. № 3. P. 62. https://doi.org/10.3390/cli6030062
  39. Luo D.H., Xiao Y.Q., Yao Y. et al. Impact of Ural blocking on winter warm Arctic–cold Eurasian anomalies. Part I: Blocking-induced amplification // J. Climate. 2016. V. 29. P. 3925–3947. https://doi.org/10.1175/JCLI-D-15-0611.1
  40. McPhaden M.J. Tropical Pacific Ocean heat content variations and ENSO persistence barriers // Geophys. Res. Lett. 2003. V. 30. № 9. P. 1480. https://doi.org/10.1029/2003GL016872
  41. McPhaden M.J., Lee T., McClurg D. El Niño and its relationship to changing background conditions in the tropical Pacific Ocean // Geophys. Res. Lett. 2011. V. 38. № 15. P. 2–5. https://doi.org/10.1029/2011gl048275
  42. Nagano A., Hasegawa T., Wakita M. Spatiotemporal vertical velocity variation in the western tropical Pacific and its relation to decadal ocean variability // Prog. Earth Planet Sci. 2022. V. 9. № 57. https://doi.org/10.1186/s40645-022-00513-3
  43. Penny S.G., Behringer D.W., Carton J.A. et al. Hybrid global ocean data assimilation system at NCEP // Monthly Weather Rev. 2015. V. 143. № 11. P. 4660–4677. https://doi.org/10.1175/MWR-D-14-00376.1
  44. Roemmich D., Gilson J. The global ocean imprint of ENSO // Geophys. Res. Lett. 2011. V. 38. L13606. https://doi.org/10.1029/2011GL047992
  45. Sen Gupta A., Stellema A., Pontes G.M. et al. Future changes to the upper ocean Western Boundary Currents across two generations of climate models // Scientific Reports. 2021. V. 11. 9538. https://doi.org/10.1038/s41598-021-88934-w
  46. Sohn B.J., Yeh S.W., Schmetz J., Song H.J. Observational evidences of Walker circulation change over the last 30 years contrasting with GCM results // Climate Dynamics. 2013. V. 40. P. 1721–1732. https://doi.org/10.1007/s00382-012-1484-z
  47. Talley L.D. Hydrographic Atlas of the World Ocean Circulation Experiment (WOCE). Volume 2: Pacific Ocean / eds. M. Sparrow, P. Chapman and J. Gould. International WOCE Project Office. Southampton, U.K. 2007. 327 p. ISBN 0-904175-54-5.
  48. Thomson R.E., Emery W.J. Data analysis methods in physical oceanography. 3rt ed. Elsevier, 2014. 716 p.
  49. Watanabe M., Dufresne J.-L., Kosaka Y. et al. Enhanced warming constrained by past trends in equatorial Pacific sea surface temperature gradient // Nature Climate Change. 2021. V. 11. № 1. P. 33–37. https://doi.org/10.1038/s41558-020-00933-3
  50. World Ocean Database 2018. Eds. Boyer T. P., et al. NOAA Atlas. Techn. ed. Mishonov A.V., NESDIS 87. 2018. 207 p. https://www.ncei.noaa.gov/products/world-ocean-database.
  51. Xie S., Xu H., Kessler W. S., Nonaka M. Air–Sea Interaction over the Eastern Pacific Warm Pool: gap winds, thermocline dome, and atmospheric convection // J. Climate. 2005. V. 18. № 1. P. 5–20. https://doi.org/10.1175/JCLI-3249.1
  52. Yang J.-C., Lin X., Xie Sh-P. et al. Synchronized tropical Pacific and extratropical variability during the past three decades // Nature Climate Change. 2020. V. 10. P. 422–427. https://doi.org/10.1038/s41558-020-0753-9
  53. Zhang R., Delworth T.L. Impact of the Atlantic Multidecadal Oscillation on North Pacific climate variability // Geophys. Res. Lett. 2007. V. 34. L23708. https://doi.org/10.1029/2007GL031601

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2.

Baixar (1MB)
3.

Baixar (900KB)
4.

Baixar (1MB)
5.

Baixar (178KB)
6.

Baixar (997KB)
7.

Baixar (745KB)

Declaração de direitos autorais © И.Д. Ростов, Е.В. Дмитриева, Н.И. Рудых, 2023

Este site utiliza cookies

Ao continuar usando nosso site, você concorda com o procedimento de cookies que mantêm o site funcionando normalmente.

Informação sobre cookies