Mineralogy of Quaternary Sediments from the Valley of Vema Fracture Zone (Central Atlantic)

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The content of sediment forming minerals in two cores from the eastern (ANS45-37) and western (ANS45-48) parts of the Vema transform fault valley is studied using the semi-quantitative XRD analysis of bulk powder sediment samples. The mineral composition of deep-sea sediments from the Amazone cone is also analyzed for comparison. It appeared that the average composition of the terrigenous component of both cores (according to prevailing quartz, secondary mica, plagioclase and potassium feldspar, as well as smectite, chlorite, kaolinite, illite) is quite similar and approximately corresponds to the composition of sediments from the Amazon cone. The ratio of four clay minerals suggests the supply of terrigenous material to the Amazon and Orinoco due to the erosion of the Andes and humid tropical weathering in the lower course of the rivers with further transportation of the suspended load to the ocean. This material was transported to the Vema transform valley due to the interplay between the gravity flows from the South American continental slope and the current of the Antarctic Bottom Water. Data on biogenic calcite (planktic foraminiferal tests, nannofossils) and opal A (radiolarians, sponge spicules) are obtained in addition. In the study area, several authigenic (diagenetic) minerals are identified. In particular, siderite and greigite are first found in the sediments from the Vema valley and Amazon cone, respectively.

Толық мәтін

Рұқсат жабық

Авторлар туралы

I. Murdmaa

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: e_v_ivanova@ocean.ru
Ресей, Moscow

O. Dara

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: e_v_ivanova@ocean.ru
Ресей, Moscow

M. Lykova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: e_v_ivanova@ocean.ru
Ресей, Moscow

D. Borisov

Shirshov Institute of Oceanology, Russian Academy of Sciences

Email: e_v_ivanova@ocean.ru
Ресей, Moscow

E. Ivanova

Shirshov Institute of Oceanology, Russian Academy of Sciences

Хат алмасуға жауапты Автор.
Email: e_v_ivanova@ocean.ru
Ресей, Moscow

Әдебиет тізімі

  1. Горбунова З.Н. Глинистые и другие высокодисперсные минералы в осадках Тихого океана // Тихий океан. Кн. 1. Осадкообразование в Тихом океане. М.: Наука, 1970. С. 373–405.
  2. Демидов А.Н., Добролюбов С.А., Морозов Е.Г. и др. Перенос придонных вод через разлом Вима Срединно-Атлантического хребта // Докл. РАН. 2007. Т. 416. № 3. С. 395–399.
  3. Демидов А.Н., Иванов А.А., Гиппиус Ф.Н., Добролюбов С.А. Перенос глубинных и донных вод через Срединно-Атлантический Хребет в разломе Вима // Докл. РАН. 2020. Т. 494. № 1. С. 76–81.
  4. Иванова Е.В., Сколотнев С.Г., Борисов Д.Г. и др. Комплексные исследования зон трансформных разломов Долдрамс и Вима в 45-м рейсе научно-исследовательского судна «Академик Николай Страхов»// Океанология. 2020. Т. 60. № 3. С. 488–490.
  5. Иванова Е.В., Борисов Д.Г., Демидов А.Н. и др. Исследования осадконакопления и характеристик водных масс Тропической Атлантики в 60-м рейсе НИС «Академик Иоффе» // Океанология. 2022. Т. 62. № 4. С. 670–672.
  6. Лисицын А.П. Осадкообразование в океанах. М.: Наука, 1974. 483 с.
  7. Рентгеновские методы изучения и структура глинистых минералов / Под ред. Г. Брауна. М.: Мир, 1965. 600 с.
  8. Рентгенография основных типов породообразующих минералов (слоистые и каркасные силикаты) / Под ред. В.А. Франк-Каменецкого. Л.: Недра. 1983. 359 с.
  9. Bader R.G., Gerard R.D., Benson W.E. et al. Site 26 // Initial Reports. Deep Sea Drilling Project. Leg 4. 1970. P. 77–92.
  10. Barretto H.T., Summerhayes C.P. Oceanography and suspended matter off northeastern Brazil // Journal of Sedimentary Petrology. 1975. V. 45. P. 822–833.
  11. Biscaye P.E. Mineralogy and sedimentation of recent deep-sea clay in the Atlantic Ocean and adjacent seas and oceans // Geol. Soc. America Bulletin. 1965. V. 76. P. 803–832.
  12. Bonatti E., Ligi M., Gasperini L. et al. Imaging crustal uplift, emersion and subsidense at Vema Fracture Zone // EOS. Transactions, AGU. 1993. V. 75. № 32. P. 371–372.
  13. Bowels F.A. Fleisher P. Orinoco and Amazon River Sediment Input to the Eastern Caribbean Basin // Marine Geology. 1985. V. 68. P. 53–72.
  14. Debrabant P., Lopez M., Chamley H. Clay Mineral Distribution and Significance in Quaternary Sediments of the Amazon Fan // Proceedings of the Ocean Drilling Program, Scientific Results // Flood R.D., Piper D.J.W., Klaus A., Peterson L.C. (Eds.). 1997. V. 155. P. 177–192.
  15. Deville E., Mascle A., Callec Y. et al. Tectonics and sedimentation interactions in the east Caribbean subduction zone: An overview from the Orinoco delta and the Barbados accretionary prism // Marine and Petroleum Geology. 2015. V. 64. P. 76–103.
  16. Eisma D., van der Gaast S.J., Martin J.M., Thomas A.J. Suspended matter and bottom deposits of the Orinoco delta: Turbidity, mineralogy and elementary composition // Netherlands Journal of Sea Research. 1978. V. 12. P. 224–251.
  17. Eittreim S.L., Biscaye P.E., Jacobs S.S. Bottom-Water Observations in the Vema Fracture Zone // Journal of Geophysical Research. 1983. V. 88. P. 2609–2614.
  18. Ercilla G., Alonso B., Baraza J. et al. New high-resolution acoustic data from the ‘braided system’ of the Orinoco deep-sea fan // Marine Geology. 1998. V. 146. P. 243–250.
  19. Ercilla G., Alonso B., Wynn R.B., Baraza J. Turbidity current sediment waves on irregular slopes: observations from the Orinoco sediment wave field // Marine Geology. 2002. V. 192. P. 171–187.
  20. Fagel N. Marine Clay Minerals, Deep Circulation and Climate // Developments in Marine Geology. 2007. V. 1. P. 139–184.
  21. Filizola N. O Fluxo de Sedimentos em Suspensão nos Rios da Bacia Amazônica Brasileira. Dissertaçao de Mestrado, Universidade de Brasília, 1999. 63 p.
  22. Filizola N. Transfert sédimentaire actuel par les fleuves amazoniens. Thèse de doctorat, Université P. Sabatier, Toulouse, 2003. 292 p.
  23. Fischer J., Rhein M., Schott F., Stramma L. Deep water masses and transports in the Vema Fracture Zone // Deep Sea Research: Part I. 1996. V. 43. № 7. P. 1067–1074.
  24. Flood R.D., Piper D.J.W., Klaus A., Peterson L.C. Proceedings of the Ocean Drilling Program, Scientific Results, 1997. V. 155.
  25. Frey D.I., Morozov E.G., Fomin V.V. et al. Regional modeling of Antarctic bottom water flows in the key passages of the Atlantic // Journal of Geophysical Research: Oceans. 2019. V. 124. Issue 11. P. 8414–8428.
  26. Friedman G.M., Sanders F.E. Principles of sedimentology. New York: Wiley, 1978. 792 p.
  27. GEBCO Compilation Group (2020) GEBCO 2020 Grid.
  28. Gibbs R.J. The geochemistry of the Amazon River system, part 1. The factors that control the salinity and the composition and concentration of the suspended solids // Geol. Soc. America Bulletin. 1967. V. 78. P. 1203–1232.
  29. Grousset F., Latouche C., Maillet N. Clay minerals as indicators of wind and current contribution to post-glacial sedimentation on the Azores/Iceland Ridge // Clay Minerals. 1983. V. 18. P. 65–75.
  30. Guyot J.L. Hydrogéochimie des fleuves de l‘Amazonie bolivienne. Paris: ORSTOM, 1993. 261 p.
  31. Guyot J.L., Jouanneau J.M., Soares L. et al. Clay mineral composition of river sediments in the Amazon Basin // Catena. 2007. V. 71. P. 340–356.
  32. Heezen B.C., Gerard. R.D., Tharp M. The Vema Fracture Zone in the Equatorial Atlantic // Geophys. Res. 1964. V. 69. P. 733–739.
  33. Hemming S.R., Biscayea P.E., Broecker W.S. et al. Provenance change coupled with increased clay flux during deglacial times in the western equatorial Atlantic // Palaeogeography, Palaeoclimatology, Palaeoecology. 1998. V. 142. P. 217–230.
  34. Kastens K.A., MacDonald K.C., Miller S.P. Deep Tow Studies of the Vema Fracture Zone. Evidence for Tectonism and Bottom Currents in the Sediments of the Transform Valley Floor // Journal of Geophysical Research. 1986. V. 91. № 3. P. 3355–3367.
  35. Lagabrielle Y., Mamaloukas-Frangoulis V., Cannat M. et al. Vema fracture zone (Central Atlantic): Tectonic and magmatic evolution of the median ridge and the eastern ridge-transform intersection domain // Journal of Geophysical Research: Solid Earth. 1992. V. 97. № 12. P. 17331–17351.
  36. McCartney M.S., Bennet S.L., Woodgate-Jones M.E. Eastward flow through the Mid-Atlantic Ridge at 11° N and its influence on the abyss of the eastern basin // Journal of Physical Oceanography. 1991. V. 21. № 8. P. 1089–1121.
  37. Meade R.H. Suspended sediment in the Amazon River and its tributaries in Brazil during 1982-84 // U.S. Geological Survey Open-File Report. 1985. V. 85-492. 39 p.
  38. Meade R.H. Suspended Sediments of The Modern Amazon and Orinoco Rivers // Quaternary International. 1994. V. 21. P. 29–39.
  39. Moore D.M., Reynolds R.C. X-Ray Diffraction and the Identification and Analysis of Clay Minerals. New York: Oxford University Press, 1997. 380 p.
  40. Morozov E., Demidov A., Tarakanov R., Zenk W. Abyssal Channels in the Atlantic Ocean: Water Structure and Flows. Springer, 2010. 266 p.
  41. Petschik R., Kuhn G., Gingele F. Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography // Marine Geology. 1996. V. 130. P. 203–229.
  42. Prinz M., Keil K., Green J.A. et al. Ultramafic and mafic dredge samples from the Equatorial Mid-Atlantic Ridge // Journal of Geophysical Research. 1976. V. 81. № 13. P. 4087–4103.
  43. Rex R.W., Murray B. X-Ray Mineralogy Studies, Leg 4 // Initial Reports. Deep Sea Drilling Project. Leg 4. 1970. P. 325–369.
  44. Rhein M., Stramma L., Krahmann G. The spreading of Antarctic Bottom Water in the tropical Atlantic // Deep Sea Research. Part I. 1998. V. 45. P. 507–527.
  45. Ryan W.B.F., Carbotte S.M., Coplan J. et al. Global Multi-Resolution Topography (GMRT) synthesis data set // Geochemistry Geophysics Geosystems. 2009. V. 10. № 3. Q03014.
  46. Stallard R.F., Edmond J.M. Geochemistry of the Amazon. 2. The influence of geology and weathering environment on the dissolved load // Journal of Geophysical Research. 1983. V. 88. № C14. P. 9671–9688.
  47. Stein R.M. Schwenmineraluntersuehungen an Flussprooben des Amazonas und seiner wichtigsten Nebenfliisse. Hauptpriifung Mineralogie. Heidelberg, F.R.G.: Institut Wr Sedimentforschung, 1979. 74 p.
  48. Van Andel T.H., Corliss J.B., Bowen V.T. The intersection between the Mid-Atlantic Ridge and the Vema Fracture Zone in the North Atlantic // Marine Res. 1967. V. 25. P. 343–351.
  49. Van Andel T.H., Komar P. Ponded Sediments of the Mid-Atlantic Ridge between 22° and 23° North Latitude // Geological Society of America Bulletin. 1969. V. 80. № 7. P. 1163–1190.
  50. Van Andel Т., von Herzen R., Phillips I. The Vema Fracture Zone and the tectonics of transverse shear zones in oceanic crustal plates // Mar. Geophys. Res. 1971. V. 1. № 3. P. 78–97.
  51. Vangriesheim A. Antarctic Bottom Water flow through the Vema Fracture Zone // Oceanol. Acta. 1980. V. 3. P. 199–207.
  52. Volat J.-L., Pastouret L., Vergnaud-Grazzini C. Dissolution and carbonate fluctuations in Pleistocene deep-sea cores: A review // Marine Geology. 1980. V. 34. P. 1–28.
  53. Wahsner M., Muller C., Stein R. et al. Clay — indicator for source areas and transport pathways — a synthesis // Boreas. 1999. V. 28. P. 215–233.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. (a) Bathymetric scheme of the study area [27] showing the location of sampling stations, directions of the main surface currents and the AADW current, assumed directions of gravity flows and sediment transport from the Amazon by surface currents. NBT - North Brazilian Current; NEPT - Northern Equatorial Countercurrent; AADW - Antarctic Bottom Water. (b) Location of the study area indicating the position of the main channels of the Amazon and Orinoco rivers, inferred directions of AADW flow, gravity flows and direction of sediment transport from the Amazon by surface currents. (c) Bathymetric scheme of the western part of the Vima Valley Transform [45] with indication of the position of the sediment sampling station, assumed AADV flow directions, and gravity flow directions. 1 - directions of surface currents; 2 - direction of AADV flow; 3 - sediment sampling station; 4 - deepwater drilling well; 5 - direction of sediment gravity flows; 6 - direction of sediment transport from the Amazon under the action of surface currents

Жүктеу (440KB)
3. Fig. 2. Content of all minerals in the ANS45-37 column compared to the average grain size and magnetic susceptibility

Жүктеу (291KB)
4. Fig. 3. Content of all minerals in the ANS45-48 column compared to the average grain size and magnetic susceptibility

Жүктеу (365KB)
5. Fig. 4. Relative content of clay minerals assuming their sum of 100% in the ANS45-37 column compared to average grain size, magnetic susceptibility, and biogenic calcite content

Жүктеу (367KB)
6. Fig. 5. Relative content of clay minerals assuming their sum of 100% in the ANS45-48 column compared to average grain size, magnetic susceptibility, and biogenic calcite content

Жүктеу (299KB)
7. Fig. 6. Diffractograms of sediment samples from columns (a) ANS45-37 from the eastern and (b) ANS45-48 from the western part of the Vima transform fault valley, (c) sediment samples from the Amazon River outflow cone region

Жүктеу (581KB)
8. Fig. 7. Content of biogenic components in column ANS45-37 in conventional units (c.u.)

Жүктеу (236KB)
9. Fig. 8. Content of biogenic components in column ANS45-48 in conventional units (c.u.)

Жүктеу (253KB)
10. Fig. 9. Microphotographs of mortality slides showing different biomorphic objects composed of calcite (a, d) and opal A (b, c). a - Discoaster broweri, ANS45-37, 20 cm; b - spicula, AI-4126, slaughter; c - spicula, ANS45-48, 40 cm; d - Discoaster pentaradiatus, ANS45-37, 10 cm

Жүктеу (1MB)

© Russian Academy of Sciences, 2024

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>