Impact of the Atlantic Meridional Overturning Circulation on Upper Water Temperature of the North Atlantic and the Atlantic Sector of the Arctic Ocean

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

In this study we investigate the impact of variability of the Atlantic Meridional Overturning Circulation (AMOC) on water temperature of the upper 100-m layer of the North Atlantic and Arctic oceans. We use three data-sets (ARMOR-3D, SODA3.4.2 и ORAS4) with different spatial resolution and covering different time periods. The temperature variability is decomposed into its natural modes using Empirical Orthogonal Functions (EOF). The second EOF, which accounts for 20–27% of dispersion of water temperature in the upper ocean, is associated with a change in the AMOC intensity. The time variability of the principal component of this mode has high correlation with the AMOC (0.6–0.9 depending on the data-set and the AMOC index used). The AMOC has the highest impact on water temperature in the Irminger and Labrador seas. The related amplitude of water temperature fluctuations reaches 1.5–2°С in the central part of the Irminger Sea, which is one of the key deep convection regions. Intensification of the AMOC leads to an increase the upper ocean temperature over most of the North Atlantic and Norwegian Sea and to a decrease of water temperature over most of the Greenland Sea, Barents Sea and in an area north of Spitsbergen.

Авторлар туралы

D. Iakovleva

St. Petersburg State University; Nansen International Environmental and Remote Sensing Centre

Хат алмасуға жауапты Автор.
Email: d.iakovleva@spbu.ru
Russia, 199034, St. Petersburg, SPbSU, 7/9 Universitetskaya nab.; Russia, 199034, St. Petersburg, 14 Line V.O., 7

I. Bashmachnikov

St. Petersburg State University; Nansen International Environmental and Remote Sensing Centre

Email: d.iakovleva@spbu.ru
Russia, 199034, St. Petersburg, SPbSU, 7/9 Universitetskaya nab.; Russia, 199034, St. Petersburg, 14 Line V.O., 7

D. Kuznetsova

St. Petersburg State University; Nansen International Environmental and Remote Sensing Centre

Email: d.iakovleva@spbu.ru
Russia, 199034, St. Petersburg, SPbSU, 7/9 Universitetskaya nab.; Russia, 199034, St. Petersburg, 14 Line V.O., 7

Әдебиет тізімі

  1. Алексеев Г.В., Вязилова А.Е., Глок Н.И. и др. Влияние аномалий температуры воды в низких широтах океана на колебания климата Арктики и их предсказуемость // Арктика: экология и экономика. 2019. Т. 3. № 35. С. 73–83. https://doi.org/10.25283/2223-4594-2019-3-73-83
  2. Алексеев Г.В., Кузмина С.И., Глок Н.И. и др. Влияние Атлантики на потепление и сокращение морского ледяного покрова в Арктике // Лед и снег. 2017. Т. 57. № 3. С. 381–390. https://doi.org/10.15356/2076-6734-2017-3-381-390
  3. Башмачников И.Л., Федоров А.М., Весман А.В. и др. Термохалинная конвекция в субполярных морях Северной Атлантики и Северо-Европейского бассейна СЛО по спутниковым и натурным данным. Часть 1: локализация областей конвекции // Современные проблемы дистанционного зондирования Земли из космоса. 2018. Т. 15. № 7. С. 184–194. https://doi.org/10.21046/2070-7401-2018-15-7-184-194
  4. Башмачников И.Л., Федоров А.М., Весман А.В. и др. Термохалинная конвекция в субполярных морях Северной Атлантики и Северо-Европейского бассейна СЛО по спутниковым и натурным данным. Часть 2: индексы интенсивности конвекции // Современные проблемы дистанционного зондирования Земли из космоса. 2019. Т. 16. № 1. С. 191–201. https://doi.org/10.21046/2070-7401-2019-16-1-191-201
  5. Белоненко Т.В., Федоров А.М., Башмачников И.Л., Фукс В.Р. Тренды интенсивности течений в Лабрадорском море и море Ирмингера по спутниковым альтиметрическим данным // Исследование Земли из космоса. 2018. № 2. С. 3–12. https://doi.org/10.7868/S020596141802001X
  6. Кузнецова Д.А., Башмачников И.Л. О механизмах изменчивости Атлантической меридиональной океанической циркуляции (АМОЦ) // Океанология. 2021. Т. 61. № 6. С. 843–855. https://doi.org/10.31857/S0030157421060071
  7. Ляхов А.Н. Современные методы обработки данных в геофизике // Труды Международной Байкальской Молодежной Научной Школы по Фундаментальной Физике и Конференции молодых ученых “Физические процессы в космосе и околоземной среде”. Иркутск: Редакционно-издательский отдел ИСЗФ СО РАН, 2006 г. С. 39–46.
  8. Федоров А.М., Башмачников И.Л., Белоненко Т.В. Локализация областей глубокой конвекции в морях Северо-Европейского бассейна, Лабрадор и Ирмингера // Вестник Санкт-Петербургского университета. Науки о Земле. 2018. Т. 63. № 3. С. 345–362. https://doi.org/10.21638/spbu07.2018.306
  9. Alekseev G.V., Smirnov A.V., Pnyushkov A.V. et al. Changes of fresh water content in the upper layer of the Arctic Basin in the 1950s-2010s // Fundamentalnaya i Prikladnaya Gidrofzika. 2021. V. 14. № 4. P. 25–38. https://doi.org/10.7868/S2073667321040031
  10. Balmaseda M.A., Mogensen K., Weaver A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4 // Quarterly Journal of the Royal Meteorological Society. 2013. V. 139. № 674. P. 1132–1161. https://doi.org/10.1002/qj.2063
  11. Bryden H.L., Johns W.E., King B.A. et al. Reduction in ocean heat transport at 26 N since 2008 cools the eastern subpolar gyre of the North Atlantic Ocean // Journal of Climate. 2020. V. 33. № 5. P. 1677–1689. https://doi.org/10.1175/JCLI-D-19-0323.1
  12. Caesar L., McCarthy G.D., Thornalley D.J.R. et al. Current Atlantic meridional overturning circulation weakest in last millennium // Nature Geoscience. 2021. V. 14. № 3. P. 118–120. https://doi.org/10.1038/s41561-021-00699-z
  13. Caesar L., Rahmstorf S., Robinson A. et al. Observed fingerprint of a weakening Atlantic Ocean overturning circulation // Nature. 2018. V. 556. № 7700. P. 191–196. https://doi.org/10.1038/s41586-018-0006-5
  14. Carton J.A., Chepurin G.A., Chen L. SODA3: A new ocean climate reanalysis // Journal of Climate. 2018. V. 31. № 17. P. 6967–6983. https://doi.org/10.1175/JCLI-D-18-0149.1
  15. Chen X., Tung K.K. Global surface warming enhanced by weak Atlantic overturning circulation // Nature. 2018. V. 559. № 7714. P. 387–391. https://doi.org/10.1038/s41586-018-0320-y
  16. Frajka-Williams E., Ansorge I.J., Baehr J. et al. Atlantic meridional overturning circulation: observed transport and variability // Frontiers in Marine Science. 2019. V. 6. № 260. https://doi.org/10.3389/fmars.2019.00260
  17. Karcher M.J., Gerdes R., Kauker F., Köberle C. Arctic warming: evolution and spreading of the 1990s warm event in the Nordic seas and the Arctic Ocean // Journal of Geophysical Research: Oceans. 2003. V. 108. № C2. https://doi.org/10.1029/2001JC001265
  18. Larnicol G., Guinehut S., Rio M.H. et al. The global observed ocean products of the French Mercator project // Proceedings of the Symposium on 15 Years of Progress in Radar Altimetry. European Space Agency Special Publication SP-614. 2006.
  19. Levermann A., Born A. Bistability of the Atlantic subpolar gyre in a coarse-resolution climate model // Geophysical Research Letters. 2007. V. 34. № 24. https://doi.org/10.1029/2007GL031732
  20. Lozier M.S., Li F., Bacon S. et al. A sea change in our view of overturning in the subpolar North Atlantic // Science. 2019. V. 363. № 6426. P. 516–521. https://doi.org/10.1126/science.aau6592
  21. McCarthy G.D, Brown P.J., Flagg C.N. et al. Sustainable observations of the AMOC: methodology and technology // Reviews of Geophysics. 2020. V. 58. № 1. P. e2019RG000654. https://doi.org/10.1029/2019RG000654
  22. Nardelli B.B., Guinehut S., Pascual A. et al. Towards high resolution mapping of 3-D mesoscale dynamics from observations // Ocean Science. 2012. V. 8. № 5. P. 885–901. https://doi.org/10.5194/os-8-885-2012
  23. Polyakov I., Johnson M. Arctic decadal and interdecadal variability // Geophysical Research Letters. 2000. V. 27. № 24. P. 4097–4100. https://doi.org/10.1029/2000GL011909
  24. Rahmstorf S., Box J.E., Feulner G. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation // Nature climate change. 2015. V. 5. № 5. P. 475–480. https://doi.org/10.1038/nclimate2554
  25. Rühs S., Oliver E.C., Biastoch A. et al. Changing spatial patterns of deep convection in the subpolar North Atlantic // Journal of Geophysical Research: Oceans. 2021. V. 126. № 7. P. e2021JC017245. https://doi.org/10.1029/2021JC017245
  26. Våge K., Pickart R.S., Sarafanov A. et al. The Irminger Gyre: Circulation, convection, and interannual variability // Deep Sea Research Part I: Oceanographic Research Papers. 2011. V. 58. № 5. P. 590–614. https://doi.org/10.1016/j.dsr.2011.03.001
  27. Verbrugge N., Mulet S., Guinehut S. QUALITY INFORMATION DOCUMENT For Global Ocean Observation-based Products GLOBAL_ANALYSIS_PHYS_ 001_020 // Copernicus, EU, URL: https://resources. marine.copernicus.eu/documents/QUID/CMEMS-GLOQUID-001-021. pdf. 2017.
  28. Vesman A.V., Bashmachnikov, I.L., Golubkin P.A., Raj R.P. The coherence of the oceanic heat transport through the Nordic seas: oceanic heat budget and interannual variability // Ocean Science Discussions. 2020. P. 1–24. https://doi.org/10.5194/os-2020-109
  29. Visbeck M. Power of pull // Nature. 2007. V. 447. № 7143. P. 383–383. https://doi.org/10.1038/447383a
  30. Volkov D.L., Meinen C.S., Schmid C. et al. Atlantic meridional overturning circulation and associated heat transport // In: Blunden J., Arndt D.S. (eds.). State of the climate in 2019. American Meteorological Society. 2020. P. 159–163. https://doi.org/10.1175/BAMS-D-20-0105.1
  31. Yashayaev I. Hydrographic changes in the Labrador Sea, 1960–2005 // Progress in Oceanography. 2007. V. 73. № 3–4. P. 242–276. https://doi.org/10.1016/j.pocean.2007.04.015

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2.

Жүктеу (806KB)
3.

Жүктеу (360KB)
4.

Жүктеу (876KB)
5.

Жүктеу (251KB)
6.

Жүктеу (275KB)

© Д.А. Яковлева, И.Л. Башмачников, Д.А. Кузнецова, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>