Possible Seismogenic-Trigger Mechanism of Activation of Glacier Destruction, Methane Emission and Climate Warming in Antarctica

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

A seismogenic-trigger mechanism is proposed for the rapid activation of the destruction of cover and shelf glaciers in West Antarctica at the end of the 20th and the beginning of the 21st centuries, accompanied by the release of methane from the underlying hydrate-bearing sedimentary rocks and consequent rapid climate warming. This mechanism is associated with the action of deformation waves in the lithosphere-asthenosphere system, resulting from the strongest earthquakes occurring in the subduction zones surrounding Antarctica – Chile and Kermadec-Macquarie. Disturbances in the lithosphere are transmitted over long distances of the order of 3000 km, and the additional stresses associated with them, which come to Antarctica several decades after earthquakes, lead to a decrease in the adhesion of glaciers to underlying rocks, accelerated sliding of glaciers and the development of faults in them. This process, in turn, results in a reduction of pressure on the underlying sedimentary layers containing gas hydrates, which lead to methane emission and climate warming. The considered hypothesis leads to the conclusion that in the coming decades the processes of destruction of glaciers and climate warming in Antarctica will speed-up due to an unprecedented increase in the number of strongest earthquakes in the subduction zones of the South Pacific Ocean in the late 20th and early 21st centuries.

Авторлар туралы

L. Lobkovsky

Shirshov Institute of Oceanology of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: llobkovsky@ocean.ru
Russia, Moscow; Russia, Dolgoprudny

A. Baranov

Sсhmidt Institute of Physics of the Earth of the Russian Academy of Sciences

Email: yuryg@gsras.ru
Russia, Moscow

I. Vladimirova

Shirshov Institute of Oceanology of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Email: yuryg@gsras.ru
Russia, Moscow; Russia, Dolgoprudny

Y. Gabsatarov

Shirshov Institute of Oceanology of the Russian Academy of Sciences; Moscow Institute of Physics and Technology (National Research University)

Хат алмасуға жауапты Автор.
Email: yuryg@gsras.ru
Russia, Moscow; Russia, Dolgoprudny

Әдебиет тізімі

  1. Баренблатт Г.И., Лобковский Л.И., Нигматулин Р.И. Математическая модель истечения газа из газонасыщенного льда и газогидратов // Докл. РАН. Науки о Земле. 2016. Т. 470. № 4. С. 721–754.
  2. Быков В.Г. Предсказание и наблюдение деформационных волн Земли // Геодинамика и тектонофизика. 2018. Т. 9. № 3. С. 721–754.
  3. Гарагаш И.А., Лобковский Л.И. Деформационные тектонические волны как возможный триггерный механизм активизации эмиссии метана в Арктике // Арктика: экология и экономика. 2021. Т. 11. № 1. С. 42–50.
  4. Епифанов В.П. Физическое моделирование режимов движения ледников // Снег и лед. 2016. Т. 56. № 3. С. 333–344.
  5. Зотиков И.А. Тепловой режим ледникового покрова Антарктиды. Л.: Гидрометеоиздат, 1977. 168 с.
  6. Лейченков Г.Л., Гусева Ю.Б., Гандюхин В.В., Иванов С.В. Строение земной коры и история геологического развития осадочных бассейнов индокеанской акватории Антарктики. СПб: ВНИИОкеангеология, 2015. 200 с.
  7. Лобковский Л.И. Возможный сейсмогенно-триггерный механизм резкой активизации эмиссии метана и потепления климата в Арктике // Арктика: экология и экономика. 2020. № 3(39). С. 62–72.
  8. Лобковский Л.И., Рамазанов М.М. К теории фильтрации с двойной пористостью // Докл. РАН. Науки о Земле. 2019. Т. 484. № 3. С. 348–351.
  9. Лобковский Л.И., Рамазанов М.М. Термомеханические волны в системе упругая литосфера–вязкая астеносфера // Изв. РАН. Механика жидкости и газа. 2021. № 6. С. 4–18.
  10. Лобковский Л.И., Рамазанов М.М. Обобщенная модель фильтрации в трещиновато-пористой среде с низкопроницаемыми включениями и ее возможные приложения // Физика Земли. 2022. № 2. С. 144–154.
  11. Baranov A., Morelli A., Chuvaev A. ANTASed – An Updated Sediment Model for Antarctica // Frontiers in Earth Science. 2021. V. 9. Article 722699.
  12. Baranov A., Morelli A. The structure of sedimentary basins of Antarctica and a new three-layer sediment model // Tectonophysics. 2023. V. 846. P. 299–313.
  13. Baranov A., Morelli A. The Moho depth map of the Antarctica region // Tectonophysics. 2013. V. 609. P. 299–313.
  14. Baranov A., Tenzer R., Bagherbandi M. Combined Gravimetric-Seismic Crustal Model for Antarctica. Surv. Geophys. 2018. V. 39. P. 23–56.
  15. Cesca S., Sugan M., Rudzinski L. et al. Massive earthquakes swarm driven by magmatic intrusion at the Bransfield Strait, Antarctica // Communications Earth & Environment. 2022. V. 3. Article 89.
  16. Christie F.D.W., Benham T.J., Batchelor C.L. et al. Antarctic ice-shelf advance driven by anomalous atmospheric and sea-ice circulation // Nature Geoscience. 2022. V. 15. P. 356–362.
  17. Climate at a Glance: Global Time Series: [Электронный ресурс] // NOAA National Centers for Environmental information. URL: https://www.ncei. noaa.gov/cag/. (Дата обращения: 08.07.2022).
  18. Cook A.J., Vaughan D.G. Overview of areal changes of the ice shelves on the Antarctic Peninsula over the past 50 years // Cryosphere. 2010. V. 4. P. 77–98.
  19. Danesi S., Morelli A. Structure of the upper mantle under the Antarctic Plate from surface wave tomography // Geophysical Research Letters. 2001. V. 28. P. 4395–4398.
  20. Domack E., Ishman S., Leventer A. et al. A chemotrophic ecosystem found beneath Antarctic Ice Shelf // Eos Trans. AGU. 2005. V. 86 (29). P. 269–272.
  21. Elsasser W.V. Convection and stress propagation in the upper mantle // The Application of Modern Physics to the Earth and Planetary Interiors / S. K. Runcorn (Ed.). N.Y.: John Wiley, 1969. P. 223–246.
  22. Fretwell P., Pritchard H.D., Vaughan D.G. et al. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica // Cryosphere. 2013. V. 7. P. 375–393.
  23. Lay T., Kanamori H. An asperity model of large earthquake sequences, in Earthquake prediction: An international review / Simpson D.W., Richards P.G. (Eds.). AGU: Washington, D.C. 1981. P. 579–592.
  24. Lay T. The surge of great earthquakes from 2004 to 2014 // Earth and Planetary Science Letters. 2015. V. 409. P. 133–146.
  25. Lobkovsky L. Seismogenic-Triggering Mechanism of Gas Emission Activizations on the Arctic Shelf and Associated Phases of Abrupt Warming // Geosciences. 2020. V. 10 (11). Article 428.
  26. Lobkovsky L.I., Baranov A.A., Ramazanov M.M., Vladimirova I.S., Gabsatarov Y.V., Semiletov I.P., Alekseev D.A. Trigger Mechanisms of Gas Hydrate Decomposition, Methane Emissions, and Glacier Breakups in Polar Regions as a Result of Tectonic Wave Deformation. Geosciences. 2022. V. 12(10). P. 372.
  27. Lösing M., Ebbing J., Szwillus W. Geothermal heat flux in Antarctica: assessing models and observations by Bayesian inversion // Frontiers in Earth Science. 2020. V. 8. Article 105.
  28. Marshall G.J., Orr A., van Lipzig N.P.M. et al. The impact of a changing Southern Hemisphere Annular Mode on Antarctic Peninsula summer temperatures // Journal of Climate. 2006. V. 19. P. 5388–5404.
  29. Melosh H.J. Nonlinear stress propagation in the Earth’s upper mantle // Journal of Geophysical Research. 1976. V. 32 (81). P. 5621–5632.
  30. Meuler A.J., Smith J.D., Varanasi K.K. et al. Relationships between water wettability and ice adhesion // Applied Materials Interfaces, American Chemical Society. 2010. V. 2 (11). P. 3100–3110.
  31. Morelli A., Danesi S. Seismological imaging of the Antarctic continental lithosphere: a review // Global and Planetary Change. 2004. V. 42. P. 155–165.
  32. Scambos T.A., Bohlander J.A., Shuman C.A. et al. Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica // Geophysical Research Letters. 2004. V. 31. Article L18402.
  33. Smith J., Hillenbrand C.-D., Subt C. et al. History of the Larsen C Ice Shelf reconstructed from sub–ice shelf and offshore sediments // Geology. 2021. V. 49 (8). P. 978–982.
  34. Straume E.O., Gaina C., Medvedev S. et al. GlobSed: Updated total sediment thickness in the world’s oceans // Geochemistry, Geophysics, Geosystems. 2019. V. 20. P. 1756–1772.
  35. Thurber A.R., Seabrook S., Welsh R.M. Riddles in the cold: Antarctic endemism and microbial succession impact methane cycling in the Southern Ocean // Proceeding of the Royal Society B, Biological Sciences. 2020. V. 287. Article 20201134.
  36. Wadham J.L., Arndt S., Tulaczyk S. et al. Potential methane reservoirs beneath Antarctica // Nature. 2012. V. 488. P. 633–637.
  37. Wang S., Liu H., Jezek K. et al. Controls on Larsen C Ice Shelf retreat from a 60-year satellite data record // Journal of Geophysical Research: Earth Surface. 2022. V. 127. Article e2021JF006346.
  38. Wille J.D., Favier V., Jourdain N.C. et al. Intense atmospheric rivers can weaken ice shelf stability at the Antarctic Peninsula // Communications Earth & Environment. 2022. V. 3. Article 90.

Қосымша файлдар


© Л.И. Лобковский, А.А. Баранов, И.С. Владимирова, Ю.В. Габсатаров, 2023

Осы сайт cookie-файлдарды пайдаланады

Біздің сайтты пайдалануды жалғастыра отырып, сіз сайттың дұрыс жұмыс істеуін қамтамасыз ететін cookie файлдарын өңдеуге келісім бересіз.< / br>< / br>cookie файлдары туралы< / a>