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Впервые проведен обзор ионных жидкостей (ИЖ), являющихся перспективными промоторами 
гидратообразования. В работе описана эффективность промотирования и кратко сформулированы 
основные принципы промотирования гидратообразования CH4 и CO2 имидазолиевыми, фосфони-
евыми, аммониевыми, гидроксильными и пропиловыми ионными жидкостями. Из проведенного 
обзора следует, что наибольшее количество исследований проведено с использованием имидазо-
лиевых ИЖ, которые являются поверхностно-активными веществами и  значительно улучшают 
кинетику процесса гидратообразования. Фосфониевые ионные жидкости этилтрибутилфосфония 
гексафторфосфат и трибутилгексилфосфония гексафторфосфат улучшают как кинетику, так и тер-
модинамику процесса гидратообразования. Они показали наибольшую функциональность из рас-
смотренных ИЖ, т. к. одновременно повысили температуру газогидратного равновесия, уменьшили 
время индукции, а также увеличили количество газа в газогидратной фазе. Показано, что рассматри-
ваемые аммониевые ИЖ эффективно снижают давление и увеличивают температуру диссоциации 
газовых гидратов. Гидроксильная ИЖ 1-гидроксиэтил‑1-метилморфолиний хлорид не заполняет 
газогидратные полости, однако искажает решетку газового гидрата, что приводит к  увеличению 
количества газа в  газогидратной фазе. Рассмотренные пропиловые ионные жидкости позволяют 
снизить как давление диссоциации газовых гидратов, так и увеличить содержание газа в газогидрат-
ной фазе. Таким образом, подбор ионных жидкостей в качестве промоторов гидратообразования 
является индивидуальным для каждой из задач при разделении и очистке природного газа.
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Запасы природного газа распределены по все-
му миру. Как известно, основным компонентом 
природного газа является метан (CH4). Одна-
ко состав природного газа широко варьируется 
в зависимости от месторождения. Одна из при-
месей в  газе — диоксид углерода (CO2), присут-
ствие которого в природном газе уменьшает его 
теплотворную способность, повышает темпера-
туру гидратообразования и приводит к коррозии 
оборудования. Месторождения природного газа 
с  высокими концентрациями CO2 встречаются 
во  многих регионах мира. В  Российской Феде-
рации в  Оренбургском и  Астраханском место-

рождении природного газа содержание CO2 до-
стигает 50% [1, 2]. В то же время, согласно ГОСТ 
5542-2014, в  горючем природном газе промыш-
ленного и  коммунально-бытового назначения 
концентрация CO2 должна составлять не  более 
2.50%. В  связи с  этим очистка природного газа 
от CO2 — важнейший этап в переработке природ-
ного газа.

Основные конвенциональные технологии 
очистки природного газа от CO2 включают в себя 
абсорбцию, адсорбцию, мембранное газоразде-
ление, а  также каталитические методы. Однако 
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данные технологии обладают определенными 
недостатками, не согласующимися с основными 
принципами “зеленой” химии, среди которых: 
существенные затраты энергии; высокие давле-
ния и,  следовательно, высокая металлоемкость 
реакторов; сложность регенерации сорбентов 
и их малая емкость; необходимость использова-
ния больших поверхностей мембраны, т. к. про-
цессы молекулярного массопереноса весьма мед-
ленные; в каталитических процессах происходит 
образование новых веществ, подлежащих удале-
нию. Таким образом, для разделения и очистки 
природного газа необходима разработка новых 
экологически безопасных и  энергетически эф-
фективных технологий.

В  настоящее время внимание многих отрас-
лей промышленности привлекают техногенные 
газовые гидраты, с  помощью которых можно 
разделять, транспортировать и хранить газ [3–5]. 
Газовые гидраты — твердые кристаллические 
вещества в виде снега или льда общей формулы 
M⋅nH2О, где Μ — молекула, образующая гидрат, 
n — количество молекул воды на одну молекулу 
газа [6]. Процесс газогидратного разделения ос-
нован на  различии гидратных свойств компо-
нентов природного газа, включая химическое 
сродство гидратных каркасов к  газам, а  также 
различие в  соответствующем фазовом составе. 
Например, газогидратная фаза может быть обо-
гащена целевым компонентом, в  то  время как 
в  находящейся в  равновесии газовой фазе кон-
центрация других газов может быть увеличена.

Преимущество технологии газогидратной 
кристаллизации — низкие затраты энергии (про-
цесс возможен при температурах выше 273.15 K), 
высокая эффективность газоразделения вслед-
ствие разницы в давлениях диссоциации газовых 
гидратов, высокая емкость газа в  газогидрат-
ной фазе, безопасность транспортировки газов. 
В  случае добавления промоторов гидратообра-
зования, после диссоциации газовых гидратов 
промоторы могут быть восстановлены на  по-
следующих стадиях. Таким образом, технология 
газогидратной кристаллизации является энерго-
эффективной и экологически безопасной.

Однако технология газогидратной кристалли-
зации имеет недостатки; в большинстве случаев 
это низкая скорость образования газовых гид
ратов и  высокие давления, необходимые для их 
образования. В связи с этим для индустриализа-
ции технологии газогидратной кристаллизации 

решающее значение имеет добавление промо-
торов, способствующих быстрому образованию 
газовых гидратов в  “мягких” условиях низкого 
давления и высокой температуры с высокой ем-
костью газа.

В настоящее время широко исследованными 
термодинамическими промоторами гидрато- 
образования являются тетрагидрофуран (ТГФ), 
тетра-н-бутиламмоний бромид (ТБАБ) и цикло-
пентан (ЦП), которые смещают кривую газогид
ратного равновесия в  сторону более высоких 
температур и более низких давлений [7, 8]. Одна
ко их крупномасштабное применение затрудне
но из-за их высокой стоимости, заполнения 
данными промоторами больших газогидратных 
полостей при изменении структуры газового 
гидрата, экологической опасности, высокой ле-
тучести и  низкой растворимости CO2 в  раство-
рах данных промоторов.

Широко исследованные кинетические промо-
торы гидратообразования — додецилсульфат нат
рия (Na–ДС) и  полиоксиэтилен(20)-сорбитан
моноолеат (полисорбат‑80), которые за  счет 
снижения поверхностного натяжения и  улуч
шения массообмена уменьшают время индукции, 
увеличивают потребление газа, не влияя на фа-
зовое равновесие газового гидрата [9, 10]. Одна-
ко присутствие Na–ДС приводит к более рыхлой 
структуре газового гидрата, что способствует его 
вспениванию при диссоциации [7]. В случае при-
менения полисорбата‑80 увеличивается вязкость 
раствора, что отрицательно сказывается на диф-
фузии газовых молекул и оказывает ингибирую-
щее действие на гидратообразование [11].

Представляется перспективным использова-
ние водных растворов ИЖ с целью промотирова-
ния процесса гидратообразования. ИЖ — орга
ническая соль в  жидком состоянии, состоящая 
из органического катиона в паре с органическим 
или неорганическим анионом [12]. ИЖ — “зеле-
ные” химикаты, так называемые дизайнерские 
растворители, обладающие следующими преи-
муществами: невоспламеняемость, низкая лету-
честь, высокая термическая, химическая и элект
рохимическая стабильности [13–16]. Кроме того, 
методы восстановления большинства ИЖ уже 
разработаны  [17, 18], что является преимуще-
ством в случае их промышленного применения.

В  настоящее время существует огромное ко-
личество обзоров по ИЖ в качестве ингибиторов 
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гидратообразования [19–23]. В мировой литера-
туре отсутствует комплексный обзор по ИЖ в ка-
честве промоторов гидратообразования. ИЖ при 
различных концентрациях, давлениях и темпера-
турах процесса может действовать и как промо-
тор, и как ингибитор [24]. Кроме того, ИЖ может 
промотировать как кинетику, так и  термодина-
мику процесса. Поиск оптимального промото-
ра гидратообразования является ресурсоемким 
и экологически опасным. В связи с этим до син-
теза ИЖ рационально провести литературный 
обзор уже исследованных ИЖ с целью выборки 
наиболее перспективных веществ и определения 
принципа их промотирования.

Цель работы — обзор по ИЖ для определения 
веществ, наиболее эффективных при образова-
нии газовых гидратов. В настоящее время в лите-
ратуре встречаются сведения о промотировании 
ИЖ-процесса гидратообразования только для 
CH4 и  CO2. Промотирование гидратообразова-
ния CO2 может быть использовано при очистке 
природного газа от  CO2 [25–27], промотирова-
ние гидратообразования CH4 — при его консер-
вации, хранении или транспортировке.

Имидазолиевые ионные жидкости

В  работе [28] было исследовано воздействие 
водных растворов 1-бутил‑3-метилимидазолия 
тетрафторбората ([BMIM][BF4]), 1-(2-гидрок-
сиэтил)-3-метилимидазолия тетрафторбората 
([OH-EMIM][BF4]), 1-этил‑3-метилимидазолия 
гидросульфата ([EMIM][HSO4]) с концентрация
ми, равными 0.5 мас.% при T = 276.15 и 279.15 K, 
Р = 12.10 и  13.70 МПа на  образование газового 
гидрата CH4. Установлено уменьшение времени 
индукции образования гидратов CH4 при добав-
лении рассматриваемых ИЖ. При T = 276.15 K, 
Р = 13.70 МПа времена индукции образования 
гидратов CH4 находятся в следующем диапазоне: 
H2O (112 мин) > [BMIM][BF4] (68 мин) > [OH-
EMIM][BF4] (64 мин) > [EMIM][HSO4] (11 мин). 
Однако не  все представленные ИЖ увеличили 
количество CH4 в  газогидратной фазе. Спустя 
20  ч после начала процесса гидратообразова-
ния количество прореагировавшего CH4 в газо-
гидратной фазе составляло: [OH-EMIM][BF4]  
(0.75 моль) > [BMIM][BF4] (0.65 моль) > H2O 
(0.54 моль) > [EMIM][HSO4] (0.38 моль).

В  работе [29] исследовали воздействие вод
ных растворов 1-бутил‑3-метилимидазолия 
хлорида ([BMIM][Cl]) (10.0–63.1 мас.%), 1-бу-

тил‑3-метилимидазолия бромида ([BMIM]
[Br]) (9.7–68.3 мас.%) при Т = 283.15–305.15 K,  
P = 9.6–100.0 МПа на образование газового гид
рата CH4. Получено, что при концентрациях 
[BMIM][Cl], равных 10.0 и 33.8 мас.%, и концент
рациях [BMIM][Br], равных 9.7 и  39.1 мас.%, 
данные ИЖ способствуют концентрированию 
большего количества CH4 в  газогидратной фазе 
по сравнению с чистой H2O; однако одновремен-
но они действуют как термодинамические инги-
биторы.

[BMIM][FeCl4] (0–4.50 мас.%) — ИЖ на осно-
ве железа, синтезированная в  работе [30] путем 
смешивания 1-бутил‑3-метилимидазола хлори-
да ([BMIM]Cl) и  гексагидрата хлорида железа 
(FeCl3·6H2O). Исследовался процесс гидрато
образования CO2 при Т = 274.15 К, Р = 5.0 МПа.  
В диапазоне концентраций, равном 0–4.50 мас.%,  
время индукции уменьшалось с  увеличением 
концентрации [BMIM][FeCl4] и составляло 5 мин  
при концентрации [BMIM][FeCl4], равной 
4.50 мас.%, что в 3.6 раза меньше по сравнению 
с чистой H2O. Емкость газогидратной фазы в ди-
апазоне концентраций [BMIM][FeCl4], равном 
0–2.50 мас.%, увеличивалась и  была больше 
по  сравнению с  чистой H2O. При концентра-
ции [BMIM][FeCl4], равной 2.50 мас.%, емкость 
газогидратной фазы составляла 112.8 об./об., что 
на 13.7% больше по сравнению с чистой H2O. Од-
нако при дальнейшем увеличении концентрации 
[BMIM][FeCl4] до  4.50 мас.% емкость газогид
ратной фазы значительно уменьшилась и  была 
ниже, чем в чистой H2O.

Исследование [31] посвящено водному рас-
твору 1-бутил‑3-метилимидазолия гексафтор-
фосфата ([BMIM][PF6]) (0–0.10 мас.%) при  
Т = 280.15 K, P = 5.29–5.68 МПа. Исследовано 
гидратообразование CH4. Получено, что кон-
станта скорости образования гидрата CH4 уве-
личивается пропорционально концентрации 
[BMIM][PF6] от 0 до 0.002 мас.%. В случае кон-
центрации [BMIM][PF6], равной 0.002 мас.%, 
константа скорости образования гидрата CH4 
примерно в  2 раза больше по  сравнению с  чи-
стой H2O, однако при дальнейшем увеличении 
концентрации [BMIM][PF6] константа скорости 
уменьшается. При концентрации [BMIM][PF6], 
равной 0.10 мас.%, константа скорости образо-
вания гидрата CH4 становится меньше по срав-
нению с  чистой H2O. Предполагается, что при 
высокой концентрации, равной 0.10 мас.%, об-
разуется дисперсная система [BMIM][PF6]–H2O, 



548 КУДРЯВЦЕВА и др.

НЕФТЕХИМИЯ   том 64   № 6   2024

микроструктура которой уменьшает скорость 
образования гидратов CH4.

В работе [32] изучены водные растворы 1-бу-
тил‑3-метилимидазолия дицианамида ([BMIM]
[N(CN)2]), 1-бутил‑3-метилимидазолия перхло-
рата ([BMIM][ClO4]), 1-бутил‑3-метилимида-
золия гидросульфата ([BMIM][HSO4]), 1-бу-
тил‑3-метилимидазолия бромида ([BMIM][Br]), 
1-бутил‑3-метилимидазолия хлорида ([BMIM]
[Cl]), 1-(2-гидроксиэтил)3-метилимидазолия 
хлорида ([OH-EMIM][Cl]) с  концентрациями, 
равными 1.0 мас.%. Изучали образование гидра-
та CH4 при Т  = 258.15 K, Р  =  7.10 МПа. Установ
лено, что рассматриваемые ИЖ уменьшают 
время индукции по сравнению с чистой H2O. По-
рядок изученных ИЖ по времени индукции был 
следующий: H2O (20.74 мин) > [BMIM][N(CN)2] 
(15.08  мин) > [BMIM][ClO4] (12.24 мин)> 
> [BMIM][Br] (11.37 мин) > [BMIM][HSO4]  
(9.19 мин) > [OH-EMIM][Cl] (8.65 мин) > 
>  [BMIM][Cl] (8.05 мин). Показано, что не  все 
рассмотренные ИЖ увеличивают скорость гид
ратообразования CH4 по  сравнению с  чистой 
H2O. Константа скорости образования газо-
вых гидратов возрастает в  следующем порядке: 
[BMIM][Br] (0.08) < [BMIM][N(CN)2] (0.15) < 
< [BMIM][Cl] (0.27) < H2O (0.41) < [OH-EMIM]
[Cl] (0.49) < [BMIM][HSO4] (0.52) < [BMIM]
[ClO4] (0.57).

В  исследовании [24] рассмотрена кинетика 
гидратообразования CH4 в  присутствии вод
ных растворов 1-бутил‑3-метилимидазолия 
бромида ([BMIM][Br]), 1-гексил‑3-метилими-
дазолия бромида ([HMIM][Br]), 1-октил‑3-ме-
тилимидазолия хлорида ([OMIM][Cl]) при кон-
центрациях, равных 1.00 мас.% при Т = 276.15 K  
и Р = 7.50 МПа. Получено, что при добавлении 
рассматриваемых ИЖ время индукции умень-
шается по сравнению с чистой H2O в следующем 
порядке: H2O (5.80 ч) > [OMIM][Cl] (5.28 ч) > 
[BMIM][Br] (0.69 ч) > [HMIM][Br] (0.68 ч). Кон-
версия CH4 в гидрат при добавлении рассматри-
ваемых ИЖ уменьшается в следующем порядке: 
[OMIM][Cl] (50.90%) > H2O (50.45%) > [BMIM]
[Br] (48.07%) > [HMIM][Br] (45.30%).

В работе [33] исследовали влияние 1-бутил‑3-
метилимидазолия бромида ([BMIM][Br]) в  диа-
пазоне концентраций, равном 0.10–0.30 мас.%, 
при Т = 274.15–293.15 K и  P = 1.00–5.00 МПа  
на эффективность концентрирования CH4 и CO2 
в  газогидратной фазе. Добавление [BMIM][Br] 

увеличило растворимость CO2 по  сравнению 
с  чистой H2O. При увеличении концентрации 
[BMIM][Br] от 0 до 0.30 мас.% растворимость CO2 
увеличивается от 8.00 до 8.33 л/л (Т = 293.15 K,  
P = 1.00 МПа). Получено, что при добавле-
нии исследованных концентраций [BMIM][Br] 
увеличивается количество растворенного газа 
в водном растворе по сравнению с чистой H2O, 
что приводит к  большему количеству газа в  об-
разовавшемся газовом гидрате. Максимальная 
емкость CH4 и CO2 в газогидратной фазе наблю-
дается при концентрации [BMIM][Br], равной 
0.20 мас.% и составляет 8.40 и 10.10 мол.% соот-
ветственно (Т  = 274.15 K, P = 5.00 МПа).

В  исследовании [34] рассмотрено влияние 
1-бутил‑3-метилимидазолия тетрафторбората 
([C4mim][BF4]) (0–0.12 мас.%) на  скорость об-
разования гидратов CO2 при Т = 273.10–278.10 K  
и P = 1.63–1.94 МПа. Получено, что при увели
чении температуры от  273.10 до  274.90 K  
(P = 1.89 МПа, C([C4mim][BF4]) = 0.12 мас.%) че
рез 250 мин после начала гидратообразования 
количество прореагировавшего CO2 в  газогид
ратной фазе уменьшилось от  440 до  380  ммоль. 
Установлено, что при увеличении давления 
от  1.63 до  1.83 МПа (Т = 274.90 К, C([C4mim]
[BF4]) = 0.12 мас.%) спустя 150 мин после нача-
ла гидратообразования количество прореагиро-
вавшего CO2 в  газогидратной фазе увеличилось 
от 190 до 370 ммоль. При увеличении концентра-
ции [C4mim][BF4] от 0 до 0.12 мас.% (Т  = 274.90 K,  
P  = 1.71 МПа) спустя 160 мин после начала гид
ратообразования количество прореагировавше-
го CO2 в газогидратной фазе увеличилось от 240 
до 335 ммоль.

Фосфониевые ионные жидкости

В  статье [35] рассмотрено воздействие этил-
трибутилфосфония гексафторфосфата ([P2 4 4 4] 
[PF6]) и  трибутилгексилфосфония гексафтор-
фосфата ([P6 4 4 4][PF6]) в  диапазоне концент
раций, равном 0.25–10.00 мас.%, на  парамет
ры процесса гидратообразования CO2 при  
T  = 273.65–277.15 K, Р = 2.00 МПа. По сравне-
нию с чистой H2O, температуры фазового равно-
весия гидратов СО2 при 10.00 мас.% систем [P2 4 4 4] 
[PF6] и [P6 4 4 4][PF6] увеличились на 0.90 и 0.30 K  
соответственно. Время индукции чистой H2O 
составило 324 мин. В  диапазоне концентраций 
[P2 4 4 4][PF6], равном 0.25–10.00 мас.%, времена 
индукции уменьшались немонотонно, мини-
мальное время индукции составило 260 мин при 
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концентрации [P2 4 4 4][PF6], равной 10.00 мас.%.  
При концентрациях [P6 4 4 4][PF6], равных 0.25–
10.00 мас.%, времена индукции также уменьша-
лись немонотонно, минимальное время индук-
ции составило 255 мин при концентрации [P6 4 4 4] 
[PF6], равной 3.75 мас.%. Содержание CO2 в чи-
стой H2O составило 37.32 ммоль CO2/моль H2O. 
Максимальное содержание CO2 составило 
70.04  ммоль CO2/моль H2O при концентрации 
[P2 4 4 4] [PF6], равной 6.25 мас.%. В случае [P6 4 4 4] 
[PF6], максимальное содержание CO2 наблюда-
лось также при концентрации [P6 4 4 4][PF6], рав-
ной 6.25 мас.%, и  составило 68.09  ммоль CO2/
моль H2O.

Аммониевые ионные жидкости

Авторы работы [36] исследовали тетрабутил
аммония гидроксид (ТБАОН) в  диапазоне кон
центраций, равном 0.001–10.00 мас.%, при  
Т = 274.15 и  298.15 K, Р = 3.50 МПа. Изуча-
лась эффективность гидратообразования CO2. 
По сравнению с чистой H2O установлено значи-
тельное увеличение содержания CO2 в  газогид
ратной фазе от 0.03 до 0.16 моль при увеличении 
концентрации ТБАОН от 0.10 до 5.00 мас.%.

В  работе [37] исследовано влияние ТБАОН 
(10.00 мас.%) на  образование газовых гидратов 
СН4 (50 мол.%) — CO2 (50 мол.%) при Т = 274.00–
286.00 K, Р = 2.00–6.50 МПа. При добавлении 
ТБАОН (10.00 мас.%) установлено смещение 
кривой газогидратного равновесия к более низ-
ким давлениям (смещение на  0.50 МПа при  
Т = 281.40 K) и  более высоким температурам  
(смещение на 1.00 K при Р  = 6.51 МПа) по срав-
нению с  кривой газогидратного равновесия 
чистой H2O. Энтальпия диссоциации газовых 
гидратов при добавлении ТБАОН выше по срав-
нению с чистой H2O, следовательно, ТБАОН уча-
ствует в  формировании газогидратного каркаса 
и включен в газогидратные полости смешанного 
гидрата СН4–CO2–ТБАОН.

Исследование [38] посвящено термодинами
ке ТБАОН (10.00 мас.%) в  системе CO2 (30– 
70 мол.%) — CH4 при Т = 274.00–285.00 K, 
Р  =  1.90–5.10 МПа. Присутствие ТБАОН смес
тило кривую газогидратного равновесия в  об-
ласть более высоких температур (смещение 
на 1.00 K при Р = 4.00 МПа) и более низких дав-
лений (смещение на 0.40 МПа при Т = 281.30 K) 
по сравнению с кривой газогидратного равнове-
сия чистой воды.

В работе [39] представлено исследование об-
разования гидрата CH4 в  присутствии ацетата 
тетраметиламмония (TMAA), бутирата холина 
(Ch-But), изобутирата холина (Ch-iB), холина 
гексаноата (Ch-Hex), холина октаноата (Ch-Oct)  
с  концентрациями, равными 1.00 мас.%, при  
Т = 275.15 K и Р = 4.00–12.00 МПа. Установлено,  
что при более низких давлениях (P < 8.00 МПа) 
влияние присутствия рассматриваемых ИЖ 
на  кривую газогидратного равновесия CH4 не-
значительно. Однако при более высоких дав-
лениях (Р  > 8.00 МПа) равновесие сместилось 
к более низким давлениям и более высоким тем-
пературам. При Р = 12.00 МПа эффективность 
термодинамического промотирования находит-
ся в следующем диапазоне: Ch–Oct > Ch–But >  
>  TMAA > Ch–iB > Ch–Hex > H2O. Показано, 
что рассматриваемые ИЖ не  участвуют в  фор-
мировании газогидратного каркаса, т. к. энталь-
пии диссоциации гидратов CH4 в  случае при-
сутствия водных растворов рассматриваемых 
ИЖ меньше по  сравнению с  чистой H2O: H2O 
(57.09 кДж/моль) > Ch–iB (57.05 кДж/моль) >  
> Ch–Hex (56.45 кДж/моль) > TMAA (51.84 кДж/
моль) > Ch–But (50.78 кДж/моль) > Ch–Oct 
(48.02 кДж/моль).

Гидроксильные ионные жидкости

В работе [40] изучен процесс гидратообразова-
ния CH4 при добавлении 1-гидроксиэтил‑1-ме-
тилморфолиния хлорида (HEMM–Cl) с  кон-
центрацией, равной 1.00 мас.%, при Т = 274.15 K  
и  Р = 7.00 МПа. Без добавления ИЖ давление 
в реакторе снижалось от 7.00 до 6.30 МПа в тече-
ние 200 мин. В присутствии 1.00 мас.% HEMM–Cl  
давление в реакторе снизилось от 7.00 до 6.30 МПа  
всего за 2 мин; таким образом, расход CH4 увели
чился из-за повышения скорости образования га-
зовых гидратов. Стоит отметить, что HEMM–Cl  
не участвовал в образовании гидрата.

Работа [41] посвящена исследованию  
HEMM–Cl в  диапазоне концентраций, равном 
0.002–2.00 мас.%, при Т  = 274.15 K и Р   =  7.00 МПа.  
Изучалось образование газовых гидратов CH4. 
Получено, что добавление HEMM–Cl увеличи-
ло количество CH4 в  газогидратной фазе и  со-
кратило время индукции по сравнению с чистой 
H2O. Однако данные зависимости не  являются 
линейными от  концентрации HEMM–Cl. Ми-
нимальное время индукции образования гидра-
та CH4 составило 0.50 мин при концентрациях  
HEMM–Cl, равных 0.005 и 0.10 мас.%. В чистой 



550 КУДРЯВЦЕВА и др.

НЕФТЕХИМИЯ   том 64   № 6   2024

H2O гидрат CH4 был получен при времени ин-
дукции, равном 1.78 мин. Максимальное количе-
ство CH4 в газогидратной фазе наблюдается при 
концентрации HEMM–Cl, равной 0.10 мас.%, 
и составляет 849.70 ммоль, что в 3.60 раза больше 
по  сравнению с  количеством CH4, прореагиро-
вавшего в тех же условиях с чистой H2O.

Пропиловые ионные жидкости

Рассмотрены [42] 1-(3-сульфонил) про-
пил‑3-метилимидазол додецилбензолсульфонат 
([MIMPS]DBSA) (0.01 мас.%), 1-(3-сульфоновая 
кислота) пропилпиперидин додецилбензолсуль-
фонат ([PIPS]DBSA) (0.05 мас.%), 1-(3-сульфо-
новая кислота) пропилпирролидин додецил-
бензолсульфонат ([PYPS]DBSA) (0.05 мас.%) 
при Т = 275.15–283.15 K с целью определения их 
влияния на  гидратообразование CO2. Установ-
лено, что по сравнению с чистой H2O, давление 
газогидратного равновесия CO2 в  присутствии 
[MIMPS]DBSA, [PIPS]DBSA, [PYPS]DBSA 
уменьшилось на 16.40, 10.80, 17.00% соответст
венно. По  сравнению с  чистой H2O, содержа-
ние CO2 в  газогидратной фазе в  присутствии 
[MIMPS]DBSA, [PIPS]DBSA, [PYPS]DBSA 
увеличилось на  31.90, 32.50, 48.90% соответ-
ственно.

Для дальнейшего исследования ИЖ в  каче-
стве промоторов гидратообразования необходи-
мы сведения о том, каков механизм увеличения 
эффективности гидратообразования. В  связи 
с  этим далее представлена табл.  1, содержащая 
краткое описание принципов промотирования 
рассмотренных ИЖ.

Согласно табл.  1, принцип промотирования 
рассмотренных ИЖ различен. На  эффектив-
ность гидратообразования также влияют рабочие 
условия процесса. В связи с этим далее рассмот
рим влияние температуры и давления процесса, 
а  также концентрации ИЖ на  эффективность 
образования газовых гидратов.

Зависимость эффективности ионных жидкостей 
от рабочих условий

Из  проведенного обзора ИЖ в  качестве 
промоторов гидратообразования следует, что 
существует зависимость эффективности гид
ратообразования от  температуры и  давления 
процесса. Следовательно, необходимо рассмо-
трение влияния ИЖ на  эффективность про-

цесса гидратообразования в  более широком 
интервале температур и  давлений. Согласно 
источникам  [43–45], стандартными диапазона-
ми температуры и  давления процессов разделе-
ния и очистки природного газа являются 268.15–
283.15 K и 2.00–8.00 МПа соответственно.

Исследование в  широком температурном 
интервале, соответствующем процессу очистки 
природного газа, проведено в  работах [33–35, 
37, 38, 42]. Показано, что при увеличении темпе-
ратуры процесса скорость гидратообразования 
снижается, а также уменьшается количество газа 
в газогидратной фазе. Таким образом, с меньши-
ми затратами энергии процесс гидратообразова-
ния будет осуществлен при меньших температу-
рах газоразделения.

Также необходимо исследование более широ-
кого диапазона давлений, что проведено в рабо-
тах [33, 37–39]. Получено, что при увеличении 
давления процесса гидратообразования увели-
чивается количество газа в  газогидратной фазе. 
Однако в  работе [39] показано, что при низких 
давлениях (менее 8.00 МПа) ИЖ выступают в ка-
честве ингибиторов гидратообразования, а  при 
более высоких давлениях (более 8.00 МПа) ИЖ 
являются промоторами этого процесса. Таким 
образом, в  большинстве случаев при больших 
давлениях газоразделения процесс гидратообра-
зования будет осуществлен с меньшими затрата-
ми энергии.

Кроме того, необходимо рассмотрение зави-
симости эффективности промотирования ИЖ 
от их концентрации. Во многих работах отмеча-
ется нелинейная зависимость содержания газа 
в газогидратной фазе от концентрации ИЖ [30, 
31, 33, 35, 41]. При некоторых концентрациях ИЖ 
является промотором гидратообразования, а при 
некоторых — ингибитором. Таким образом, ра-
бота по поиску оптимальной концентрации ИЖ 
является сложной, и в случае синтеза новых ИЖ 
необходимо исследование эффективности про-
мотирования в  широком диапазоне концентра-
ций.

Выбор оптимальной ионной жидкости

В  случае применения технологии газогид
ратной кристаллизации с  целью энергоэффек-
тивного разделения природного газа важными 
параметрами являются высокая емкость газа 
в  газогидратной фазе, эффективное снижение 
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давления диссоциации газовых гидратов, корот-
кое время индукции.

Наиболее перспективными для разделения 
природного газа являются ИЖ, имеющие двой-
ную функциональность, т. е. улучшающие кине-
тику и термодинамику процесса гидратообразо-
вания.

Согласно проведенному обзору ИЖ в  каче-
стве промоторов гидратообразования, установ-
лено, что наиболее функциональными являют-
ся фосфониевые ИЖ [P2 4 4 4][PF6], [P6 4 4 4][PF6]. 
Данные ИЖ повышают температуру газогидрат-
ного равновесия, уменьшают время индукции, 
а также увеличивают количество газа в газогид
ратной фазе. В  рассматриваемом диапазоне их 
концентраций, равном 0.25–10.00 мас.%, учиты-
вая минимальное время индукции и большее по-
глощение газа в  газогидратной фазе, оптималь-
ными концентрациями являются 10.00 мас.%  
[P2 4 4 4][PF6] и 3.75 мас.% [P6 4 4 4][PF6].

Другие рассмотренные ИЖ промотируют 
только кинетику или термодинамику процесса.

Получено, что рассмотренные имидазолие
вые ИЖ являются поверхностно-активными 
веществами и улучшают кинетику процесса гид
ратообразования. Наличие имидазолиевых ИЖ 
способствует снижению поверхностного натяже-
ния H2O, улучшению контакта фаз газ–жидкость 
и  увеличению вероятности зародышеобразова-
ния на границе раздела газ–жидкость. Это при-
водит к уменьшению времени индукции газовых 
гидратов и  повышению емкости газа в  газогид
ратной фазе. Таким образом, имидазолиевые 
ИЖ будут эффективны на месторождениях при-
родного газа с большим потоком природного газа 
и низкими давлениями процесса газоразделения.

Установлено, что рассматриваемые аммоние
вые ИЖ эффективно снижают давление диссо
циации газовых гидратов. Аммониевая ИЖ 
TБAOH заполняет большие газогидратные по-
лости, образуется стабильная полуклатратная 
структура. Использование TБAOH позволит 
снизить затраты энергии при дальнейшей диссо-
циации газовых гидратов. Так как для диссоциа
ции структур с  заполненными газом малыми 
и большими газогидратными полостями требует-
ся меньше энергии, захваченный в полостях газ 
ослабляет взаимодействие между водородными 
связями за  счет столкновений газовых молекул 

со  стенкой полости [38]. В  отличие от  TБAOH, 
другие рассмотренные аммониевые ИЖ (TMAA, 
Ch-But, Ch-iB, Ch-Hex, Ch-Oct) не  заполняют 
газогидратные полости, а эффективность термо
динамического промотирования наблюдалась 
только при высоких давлениях (более 8.00 МПа). 
Таким образом, аммониевые ИЖ могут эффек-
тивно использоваться с  целью снижения давле-
ния диссоциации газовых гидратов.

Гидроксильные ИЖ, среди которых HEMM–Cl,  
не заполняют газогидратные полости, однако ис-
кажают решетку газового гидрата, что приводит 
к  увеличению скорости роста газовых гидратов 
и  увеличению количества прореагировавшего 
газа в  газогидратной фазе. Данные ИЖ могут 
применяться с целью концентрирования в газо-
гидратной фазе целевых компонентов в случае их 
высоких начальных концентраций.

Рассмотренные пропиловые ИЖ позволяют 
снизить как давление диссоциации газовых гид
ратов, так и увеличить содержание газа в газогид
ратной фазе. Таким образом, они также будут 
эффективны на  месторождениях природного 
газа в случае потока природного газа с высоким 
давлением диссоциации газовых гидратов.

ЗАКЛЮЧЕНИЕ

Проведенный литературный обзор ИЖ, вы-
ступающих в  качестве перспективных промо-
торов гидратообразования, показал их эффек-
тивность при снижении давления диссоциации 
газовых гидратов, повышении температуры их 
диссоциации, а также уменьшении времени ин-
дукции и увеличении емкости газа в газогидрат-
ной фазе.

Установлено, что из  рассмотренных ИЖ 
наиболее функциональными являются [P2 4 4 4]
[PF6] и [P6 4 4 4][PF6] с концентрациями, равными  
10.00 и  3.75 мас.% соответственно. Данные ИЖ 
одновременно повышают температуру газогид
ратного равновесия, уменьшают время индук-
ции, а также увеличивают количество газа в газо-
гидратной фазе.

Показано, что имидазолиевые ИЖ будут эф-
фективны на  месторождениях природного газа 
с большим потоком природного газа и низкими 
давлениями процесса очистки природного газа. 
Аммониевые ИЖ могут эффективно использо-
ваться с целью снижения давления диссоциации 
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газовых гидратов. Гидроксильные ИЖ, среди ко-
торых HEMM–Cl, могут применяться с  целью 
концентрирования в  газогидратной фазе целе-
вых компонентов в случае их высоких начальных 
концентраций. Рассмотренные пропиловые ИЖ 
будут эффективны на  месторождениях природ-
ного газа в случае потока природного газа с вы-
соким давлением диссоциации газовых гидратов.

Дальнейшие исследования в области исполь
зования ИЖ в  качестве промоторов гидрато
образования будут посвящены разработке 
усовершенствованных ИЖ, которые станут 
экономичными, экологически безопасными 
и  смогут использоваться в  качестве низкодо-
зированных промоторов газовых гидратов СН4 
и  CO2 с  двойной функциональностью термоди-
намического и кинетического промотирования.
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