A neural-network method for the synthesis of informative features for the classification of signal sources in cognitive radio systems


Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

This paper discusses possible methods for the synthesis of informative features for the classification of signal sources in cognitive radio systems using artificial neural networks. A synthesis method based on the use of autoassociative neural networks is proposed. From the point of view of the classification of the signals, informativeness of synthesized features is estimated using a modified artificial neural network based on radial basis functions that contains an additional self-organizing layer of neurons that provide the automatic selection of the variance of basis functions and a significant reduction of the network dimension. It is shown that the use of autoassociative networks in the problem of the classification of signal sources makes it possible to synthesize the feature space with a minimum dimension while maintaining separation properties.

Sobre autores

S. Adjemov

Moscow Technical University of Communications and Informatics

Autor responsável pela correspondência
Email: adjemov@srd.mtuci.ru
Rússia, ul. Aviamotornaya 8a, Moscow, 111024

N. Klenov

Moscow Technical University of Communications and Informatics; Department of Physics

Email: adjemov@srd.mtuci.ru
Rússia, ul. Aviamotornaya 8a, Moscow, 111024; Moscow, 119991

M. Tereshonok

Moscow Technical University of Communications and Informatics

Email: adjemov@srd.mtuci.ru
Rússia, ul. Aviamotornaya 8a, Moscow, 111024

D. Chirov

Moscow Technical University of Communications and Informatics

Email: adjemov@srd.mtuci.ru
Rússia, ul. Aviamotornaya 8a, Moscow, 111024

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Allerton Press, Inc., 2016