Stabilization of Steady Motions for Systems with Redundant Coordinates


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The vector-matrix Shulgin’s equations are used to stabilize the steady motions of mechanical systems with nonlinear geometric constraints in the case of incomplete information on the state. The momenta are introduced only for the cyclic coordinates that are not used to control. Three variants of the measurement vector are used to prove a theorem on the stabilization of control with the help of a part of the cyclic coordinates described by Lagrange variables. The control coefficients and the estimation system coefficients are specified by solving the corresponding Krasovskii linear-quadratic problem for a linear controlled subsystem without the critical variables corresponding to the redundant coordinates and to the introduced momenta. The stability of the complete closed nonlinear system is proved by reducing to a special Lyapunov case and by the application of the Malkin stability theorem in the case of time-varying perturbations.

作者简介

A. Krasinskii

Moscow State University of Food Production, Institute of Economics and Management

编辑信件的主要联系方式.
Email: krasinsk@mail.ru
俄罗斯联邦, Volokolamskoe Shosse 11, Moscow, 125080

A. Il’ina

Moscow Aviation Institute, Faculty of Information Technologies and Applied Mathematics

编辑信件的主要联系方式.
Email: happyday@list.ru
俄罗斯联邦, Volokolamskoe Shosse 4, Moscow, 125993

E. Krasinskaya

Bauman Moscow State Technical University, Faculty of Fundamental Sciences

编辑信件的主要联系方式.
Email: krasinsk@mail.ru
俄罗斯联邦, ul. Baumanskaya 5/1, Moscow, 105005

补充文件

附件文件
动作
1. JATS XML

版权所有 © Allerton Press, Inc., 2019